帳號:guest(18.188.3.43)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳佳青
作者(外文):Chen, Chia-Ching
論文名稱(中文):Cation-π 作用力對膠原蛋白穩定性及自組裝影響之探討
論文名稱(外文):Study of Cation-π interactions in the stability and self-assembly of collagen triple helix
指導教授(中文):洪嘉呈
指導教授(外文):Horng, Jia-Cherng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學號:9723579
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:107
中文關鍵詞:Cation-π 作用力膠原蛋白自組裝
外文關鍵詞:Cation-π interactionscollagenself-assembly
相關次數:
  • 推薦推薦:0
  • 點閱點閱:421
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
膠原蛋白的結構是由三條左旋第二型聚脯胺酸螺旋結構,沿著一個相同的主軸右旋轉組成,序列中每三個胺基酸有一個 Gly 、高含量的亞胺基酸和氫鍵是促進其穩定性的重要因素。另一方面, 正電荷與芳香環四極矩間的非共價鍵作用力 - cation-π 作用力,也陸續被發現其在蛋白質的 ligand 鍵結等生物辨識上的重要性。因此,我們利用一系列的主客胜□系統去探討 cation-π 作用力對膠原蛋白三股螺旋的影響;我們合成了一系列胜□: Ac-(POG)3-(PYGXOG)-(POG)3-NH2 ,在 X 位置為 Phe、 Tyr 、 Trp 、 Phe(4-F), 、 Phe(F5) 和 Phe(4-Me); Y 位置為 Lys 、 Arg。 而 X 位置的 Trp 由於其立體障礙的緣故,使其形成 cation-π 作用力不如預期的大。而當 Y 位置為 Arg 的 Tm 值比 Lys 時高,因為 Arg 側鏈形狀的幾何特性,所以比 Lys 易產生 cation-π 作用力,與之前的文獻結論一致。此外,非自然胺基酸取代則顯現出,當芳香環側鏈上有電子基的去活化者 – 氟,會減少膠原蛋白模擬胜□的穩定性,因其降低 π 電子密度而減弱了 cation-π 作用力,證實 cation-π 作用力對於膠原蛋白三股螺旋的穩定性有重要的貢獻。
更進一步,我們設計膠原蛋白模擬胜□序列: Ac-RG(POG)8F-NH2 和 Ac-RG(POG)10F-NH2 ,發現 cation-π 作用力對促進膠原蛋白模擬胜□的自組裝速率的影響。最後,我們亦試著利用 cation-π 作用力去形成異源三聚體膠原蛋白模擬胜□。
以上這些結果顯示出,強健的非共價鍵作用力 – cation-π 作用力,可以被應用在穩定膠原蛋白模擬胜□,及促使膠原蛋白模擬胜□自組裝成高階結構。
Collagen is a right-handed triple helix composed of three left-handed PPⅡ helices. The presence of Gly as every third residue, a high content of imino acids and hydrogen bonding are significant characteristics to improve the stability of collagen. Cation-π interactions are considered as an electrostatic attraction between a positive charge and the quadrupole moment of the aromatic ring and are important in a variety of proteins that bind to ligands or substrates. Here, we used a host-guest peptide system to study the cation-π interactions in the collagen triple helix. A series of Ac-(POG)3-(PYGXOG)-(POG)3-NH2 peptides were synthesized and characterized, where X is Phe, Tyr, Trp, Phe(4-F), Phe(F5), Phe(4-Me), and Y is Lys, Arg. Owing to the steric hindrance, the cation-π interactions formed by Trp are not as stable as what we predicted. The peptides with Arg in the Y position have a higher Tm value than those with Lys at this position consistent with the previous conclusion that Arg is more likely than Lys to be in a cation-π interaction due to its geometric features. Moreover, the unnatural residue substitutions showed that an electron-withdrawing deactivator, fluorine, in the aromatic ring will reduce the thermal stability because it would reduce the π-electron density as well as the cation-π interaction. These results suggest that cation-π interactions significantly contribute to the collagen triple helix stability.
Furthermore, we design another two peptides, Ac-RG(POG)8F-NH2 and Ac-RG(POG)10F-NH2 to promote the rate of self-assembly by cation-π interactions. We have also tried to use cation-π interactions to form the heterotrimeric collagen helices. These results exhibit that the strong and non-covalent force, cation-π interactions, could be applied to stabilize collagen triple helices and assemble them into a higher order structure.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 vii
表目錄 xii
Scheme xiii
第一章 緒論 1
1-1 前言 1
1-2 Cation-π作用力 (Cation-πinteractions) 1
1-2-1 芳香環π電流 2
1-2-2 Cation-π作用力與其他作用力 4
1-3 Cation-π作用力在水溶液中的研究 4
1-4 生物系統中的cation-π作用力 7
1-4-1 帶電荷與芳香環側鏈的胺基酸 7
1-4-2 胺基-芳香環作用力 11
1-4-3 乙醯膽鹼 (Acetylcholine) 與相關蛋白質鍵結 13
1-5 膠原蛋白 (Collagen) 15
1-6 膠原蛋白的結構 18
1-6-1 脯胺酸 (Pro) 穩定膠原蛋白的能力 18
1-6-2 氫氧脯胺酸 (Hyp) 穩定膠原蛋白的能力 20
1-6-3 膠原蛋白模擬胜□上的鹼基胺基酸與芳香環胺基酸 23
1-7 膠原蛋白的自組裝 (Self-association or self-assembly) 25
1-8 研究方向 31
第二章 實驗部分 33
2-1 實驗步驟流程 33
2-2 實驗儀器 34
2-3 實驗藥品 36
2-4 Fmoc-Pro-Hyp-Gly-OH tripeptide 之合成 38
2-4-1 Boc-(4R,2S)-hydroxyproline 之合成 39
2-4-2 Boc-Hyp-Gly-OBn 之合成 39
2-4-3 Fmoc-Pro-Hyp-Gly-OBn 之合成 40
2-4-4 Fmoc-Pro-Hyp-Gly-OH 之合成 40
2-5 Fmoc-Phe-Hyp-Gly-OH tripeptide 之合成 41
2-5-1 Fmoc-Phe-Hyp-Gly-OBn 之合成 41
2-5-2 Fmoc-Phe-Hyp-Gly-OH 之合成 42
2-6 固相胜□合成法 (Solid-phase peptide synthesis, SPPS) 42
2-6-1酯化反應 (Esterification) 46
2-6-2 去保護 (Deprotection) 46
2-6-3活化 (Activation) 47
2-6-4耦合 (Coupling) 49
2-6-5 切除 (Cleavage) 49
2-7 固相胜□合成膠原蛋白模擬胜□鏈 50
2-7-1 合成 Ac-(POG)3-(PYGXOG)-(POG)3-NH2 系列膠原蛋白模擬胜□鏈 50
2-7-2 合成 Ac-RG-(POG)n-F-NH2, n= 8, 10、Ac-(FOG)8- NH2、Ac-(PRG)8- NH2 系列膠原蛋白模擬胜□鏈 51
2-8 利用高壓液相層析儀 HPLC 進行純化 52
2-9 圓二色光譜儀 (Circular dichroism spectroscopy, CD) 介紹 54
2-10 CD 光譜量測與資料處理 57
2-10-1 Far-UV CD 光譜 (Wavelength scans) 57
2-10-2 變溫 CD 光譜量測 (Thermal denaturation) 58
2-10-3測量折疊速率 ( Refolding kinetics) 58
2-10-4 變溫實驗資料處理 58
2-10-5 動力學實驗資料處理 61
2-11 觀察膠原蛋白模擬胜□自組裝實驗 61
2-11-1 UV-Vis量測濁度 (turbidity) 62
2-11-2量測動態光散射光譜 62
2-11-3動態光散射 (dynamic light scattering, DLS) 介紹 62
2-11-4 以穿透式電子顯微鏡 (TEM) 鑑定結構 64
第三章 結果與討論 66
3-1 Ac-(POG)3-(PYGXOG)-(POG)3-NH2系列胜□探討 66
3-1-1 CD 光譜探討 66
3-1-2 利用 Swiss-PDB Viewer 和 Accelrys Discovery Studio 計算 cation-π 作用力的距離 81
3-2 Ac-RG-(POG)n-F-NH2 (n= 8,10) 系列胜□自組裝探討 83
3-2-1 CD 光譜探討 83
3-2-2 UV-Vis 光譜探討濁度 (turbidity) 85
3-2-3 觀察穿透式電子顯微鏡 (TEM) 86
3-2-4量測動態光散射光譜 92
3-3 異源三聚合胜□ (Heterotrimeric peptides) 系列探討 94
3-3-1 CD 光譜探討 94
第四章 結論 99
第五章 參考文獻 (References) 100
附錄 105
1. Petti, M. A., Shepodd, T. J., Barrans, J., R. E., Dougherty, D. A. J. Am. Chem. Soc. 1988, 110, 6825.
2. Dougherty, D. A. Science 1996, 271, 163.
3. Scrutton, N. S., Raine, A. R. C. Biochem. J. 1996, 319, 1.
4. Cowan, P. M., McGavin, S., North, A. C. T. Nature 1955, 176, 1062.
5. Rich, A., Crick, F. H. C. Nature 1955, 176, 915.
6. Rich, A., Crick, F. H. C. J Mol Biol 1961, 3, 483.
7. Prockop, D. J., Kivirriko, K. I. Ann. Rev. Biochem. 1995, 64, 403.
8. Prockop, D. J. Matrix Biol. 1998, 16, 519.
9. Prockop, D. J. Biochem. Soc. Trans. 1999, 27, 15.
10. Sunner, J., Nishizawa, K., Kebarle, P. J. Phys. Chem. 1981, 85, 1814.
11. Kumpf, R. A., Dougherty, D. A. Science 1993, 261, 1708.
12. Deakyne, C. A., Meot-Ner (Mautner), M. J. Am. Chem. Soc. 1985, 107, 474.
13. Meot-Ner (Mautner), M., Deakyne, C. A. J. Am. Chem. Soc. 1985, 107, 469.
14. Ma, J. C., Dougherty, D. A. Chem. Rev. 1997, 97, 1303.
15. Mecozzi, S., West, A. P., Jr., Dougherty, D. A. J. Am. Chem. Soc. 1996, 118, 2307.
16. Caldwell, J. W., Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 4177.
17. Mecozzi, S., West, A. P., Jr., Dougherty, D. A. Proc. Natl. Acad. Sci. USA 1996, 93, 10566.
18. Kearney, P. C., Mizoue, L. S., Kumpf, R. A., Forman, J. E., McCurdy, A., Dougherty, D. A. J. Am. Chem. Soc. 1993, 115, 9907.
19. Guo, B. C., Purnell, J. W., Castleman Jr., A. W. Chem. Phys. Lett. 1990, 168, 155.
20. Taft, R. W., Anvia, F., Gal, J.-F., Walsh, S., Capon, M., Holmes, M. C., Hosn, K., Oloumi, G., Vasanwala, R., Yazdani, S. Pure Appl. Chem. 1990, 62, 17.
21. Israelachvili, J. Intermolecular and Surface Forces, 2nd ed., Academic Press, San Diego, 1991, pp 450.
22. Burley, S. K., Petsko, G. A. Adv. Protein Chem. 1988, 39, 125.
23. Shepodd, T. J., Petti, M. A., Dougherty, D. A. J. Am. Chem. Soc. 1986, 108, 6085.
24. Shepodd, T. J., Petti, M. A., Dougherty, D. A. J. Am. Chem. Soc. 1988, 110, 1983.
25. Dougherty, D. A., Stauffer, D. A. Science 1990, 250, 1558.
26. Murayama, K., Aoki, K. Chem. Commun. 1997, 119, 23.
27. Chipot, C., Maigret, B., Pearlman, D. A., Kollman, P. A. J. Am. Chem. Soc. 1996, 118, 2998.
28. Aoki, K., Murayama, K., Nishiyama, H. J. Chem. Soc., Chem. Commun. 1995, 2221.
29. Brocchieri, L., Karlin, S. Proc. Natl. Acad. Sci. USA 1994, 91, 9297.
30. Karlin, S., Zuker, M., Brocchieri, L. J. Mol. Biol. 1994, 239, 227.
31. Burley, S. K., Petsko, G. A. FEBS Lett. 1986, 203, 139.
32. Gallivan, J.P., Dougherty, D.A. Proc. Natl. Acad. Sci. USA 1999, 96, 9459.
33. Crowley, P. B., Golovin, A. Proteins 2005, 59, 231.
34. Anderson, M. A., Ogbay, B., Arimoto, R., Sha, W., Kisselev, O. G., Cistola, D. P., Marshall, G. R. J. Am. Chem. Soc. 2006, 128, 7531.
35. Prajapati, R. S., Sirajuddin, M., Durani, V., Sreeramulu, S., Varadarajan, R. Biochemistry 2006, 45, 15000.
36. Sussman, J. L., Harel, M., Frolow, F., Oefner, C., Goldman, A., Toker, L., Silman, I. Science 1991, 253, 872.
37. Gleitsman, K. R., Kedrowski, S. M. A., Lester, H. A., Dougherty, D. A. J. Biol. Chem. 2008, 283, 35638.
38. Zhong, W., Gallivan, J. P., Zhang, Y., Li, L., Lester, H. A., Dougherty, D. A. Proc. Natl. Acad. Sci. USA 1998, 95, 12088.
39. Brejc, K. et al. Nature 2001, 411, 269.
40. Sixma, T. K., Smit, A. B. Biophys. Biomol. Struct. 2003, 32, 311.
41. Xiu, X., Puskar, N. L., Shanata, J. A. P., Lester, H. A., Dougherty, D. A. Nature 2009, 458, 534.
42. Gribbon, C., Channon, K. J. Zhang, W., Banwell, E. F. Bromley, E. H. C., Chaudhuri, J. B., Oreffo, R. O. C., Woolfson, D. N. Biochemistry 2008, 47, 10365.
43. 黃彥富、湯正明、徐善慧,科學發展期刊,2003年 2月 362期 pp. 44-47
44. 陳柏翰、劉中行,科學發展期刊,2004年 8月 380期 pp. 4-35.
45. Sakakibara, S. et al. Biochim. Biophys. Acta 1973, 303, 198.
46. Brinckmann, J. Top. Curr. Chem. 2005, 247, 1.
47. Veit, G., Kobbe, B., Keene, D. R., Paulsson, M., Koch, M., Wagener, R. J. Biol. Chem. 2006, 281, 3494
48. Gelse, K., P□schl, E., Aigner, T. Adv. Drug Deliv. Rev. 2003, 55, 1531.
49. Ramachandran, G.N.: Structure of collagen at the molecular level.In: Treatise on Collagen, vol. 1, Chemistry of Collagen, ed. By Ramachandran, G.N., Academic Press, London, 1967, 103
50. Fraser, R. D. B., MacRae, T. P.: Conformation in Fibrous Proteins, Academic Press, New York, 1973.
51. Bella, J., Eaton, M., Brodsky, B., Berman, H. M. Science 1994, 266, 75.
52. Bella, J., Brodsky, B., Berman, H.M. Structure 1995, 3, 893.
53. Brodsky, B., Persikov, A. V. Adv. Protein Chem. 2005, 70, 301.
54. Hinderaker, M. P., Raines, R. T. Protein Sci. 2003, 12, 1188.
55. Brodsky, B., Ramshaw, J.A.M. Matrix Biol. 1997, 15, 545
56. Privalov, P. L. Adv. Protein Chem. 1982, 35,1
57. Shah, N. K., Ramshaw, J. A. M., Kirkpatrick, A., Shah, C., Brodsky, B. Biochemistry 1996, 35 ,10262.
58. Burjanadze, T. V. Biopolymers 2000, 53, 523.
59. Vitagliano, L., Berisio, R., Mastrangelo, A., Mazzarella, L., Zagari, A. Protein Sci. 2001, 10, 2627.
60. Bretscher, L. E., Jenkins, C. L., Taylor, K. M., DeRider, M. L., Raines, R. T. J. Am. Chem. Soc. 2001, 123, 777.
61. Ramshaw, J. A. M., Shah, N. K., Brodsky, B. J. Struct. Biol. 1998, 122, 86.
62. Yang, W., Chan, V. C., Kirkpatrick, A., Ramshaw, J. A. M., Brodsky, B. J. Biol. Chem. 1997, 272, 28837.
63. Persikov, A. V., Ramshaw, J. A. M., Kirkpatrick, A., Brodsky, B. Biochemistry 2000, 39, 14960
64. Persikov, A. V., Ramshaw, J. A. M., Kirkpatrick, A., Brodsky, B. Karlin, S. J. Mol. Biol. 2002, 316, 385.
65. Whitesides, G. M., Boncheva, M. Proc. Natl. Acad. Sci. USA 2002, 99, 4769.
66. Kar, K., Amin, P., Bryan, M.A., Persikov, A.V., Mohs, A., Wang, Y.H., Brodsky, B. J. Biol. Chem. 2006, 281, 33283.
67. Kar, K., Wang, Y. H., Brodsky, B. Protein Sci. 2008, 17, 1086.
68. Kar, K., Ibrar, S., Nanda, V., Getz, T.M., Kunapuli, S.P., Brodsky, B. Biochemistry 2009, 48, 7959.
69. Przybyla, D. E., Chmielewski, J. Biochemistry, 2010, 49, 4411.
70. Chorghade, M. S., Mohapatra, D. K., Sahoo, G., Gurjar, M. K., Mandlecha, M. V., Bhoite, N., Moghe, S., Raines, R. T. J. Fluorine Chem. 2008, 129, 781.
71. 張湘戎,體抑素胜□分子內雙硫鍵建構之研究,碩士學位論文,中原大學化學研究所,2003。
72. Merrifield, R. B. Science 1986, 232, 341.
73. Novabiochem catalog 2006/2007
74. Coligan, J. E., Dunn, B. M., Speicher, D. W., Wingfield, P. T., Ploegh, H. L. “Current Protocols in Protein Science” Wiley Interscience. 2010.
75. Whitmore, L., Wallace, B.A. Biopolymers 2008, 89, 392.
76. 鄭統元,立體電子效應對雞絨毛蛋白 (Villin headpiece subdomain, HP 36) 結構影響之探討,碩士學位論文,清華大學化學研究所,2009。
77. Y. S. Chen, C. C. Chen, J. C. Horng. Biopolymers (Peptide Science) 2010, in press (DOI: 10. 1002/bip. 21470)
78. Leonard, D. W., Meek, K. M. Biophys. J. 1997, 72, 1382.
79. Berne, B. J., Pecora, R. “Dynamic light scattering: with applications to chemistry, biology, and physics” Dover Publications, Mineola. New York 1976.
80. Brookhaven Instruction Manual for 90 plus.
81. Gauba, V., Hartgerink, J. D. J. Am. Chem. Soc. 2007, 129, 15034.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *