帳號:guest(18.118.26.90)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐惠纓
作者(外文):Shiu, Hui-Ying
論文名稱(中文):以溶液方式合成之氧化物奈米結構製作異質介面太陽能電池
論文名稱(外文):Solution-processed All-oxide Nanostructures for Heterojunction Solar Cells
指導教授(中文):游萃蓉
指導教授(外文):Yew, Tri-Rung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9731501
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:116
中文關鍵詞:噴塗技術太陽能電池氧化物鈷摻雜二氧化錫氧化亞銅
外文關鍵詞:spraysolar celloxideCo-doped SnO2Cu2O
相關次數:
  • 推薦推薦:0
  • 點閱點閱:40
  • 評分評分:*****
  • 下載下載:3
  • 收藏收藏:0
本研究重點在於利用溶液方式合成 p型氧化亞銅 (Cu2O) 與鈷摻雜之 n型二氧化錫 (Sn1-xCoxO2) 奈米結構氧化物製作異質介面太陽能電池,以期達到全太陽光光譜吸收之目的,且藉由噴塗技術 (spray technology) 與熱壓系統製作太陽能電池,達到低成本與大面積製作等優勢。
本研究將嘗試藉由調整摻雜不同重量百分比之硫酸鈷水合物、氯化錫水合物濃度和pH值,製備出以低溫 (□ 90 □C) 濕式化學法成長的Sn1-xCoxO2顆粒結構與Cu2O奈米結構,並利用此兩種無毒且地球蘊藏豐富的元素分別作為n型與p型半導體材料,並結合噴塗技術與熱壓製程成功製作出n-Sn1-xCoxO2/p-Cu2O奈米結構異質介面太陽能電池。
另一方面,本研究亦分析氧化物之光學特性,得知 n-Sn1-xCoxO2顆粒太陽光光譜吸收波段為700 nm至1400 nm,此與吸收波段300 nm至800 nm之p-Cu2O結合成功達到可預期之太陽光光譜全波段吸收之目的。
在本研究中利用噴塗技術與熱壓系統製作之n-Sn1-xCoxO2/p-Cu2O奈米結構異質介面太陽能電池,隨著不同硫酸鈷摻雜重量百分比逐步0 wt%, 0.025 wt% 到 0.075 wt% 遞增,其最高能量轉換效率亦為線性增加,分別為7□10-4%、0.43%與1.2%,目前最高能量轉換效率為以n-Sn0.86Co0.14O2/p-Cu2O 製作之太陽能電池,其為開路電壓 (open-circuit voltage, Voc) Voc= 2.325 V,短路電流 (short-circuit current, Jsc) Jsc =1.426 mA/cm2,填充因子 (fill factor, FF) FF =36%,能量轉換效率 (power conversion efficiency, PCE) PCE =1.2%。
相較目前文獻報導,以溶液方式製作之氧化物奈米結構太陽能電池之最高能量轉換效率為0.88%,本研究可成功的製作n-Sn0.86Co0.14O2/p-Cu2O氧化物奈米結構異質介面太陽能電池之最高能量轉換效率為1.2%。
摘要 I
Abstract III
致謝 V
目錄 VIII
圖目錄 XI
表目錄 XVIII
第一章 緒論 1
第二章 文獻回顧與原理簡介 5
2.1 太陽能電池簡介 5
2.2 p-n接面工作原理 8
2.3 太陽能電池電性簡介 9
2.4 太陽能電池能量損失分析圖 13
2.5 氧化物異質結太陽能電池工作原理 16
2.6 以全氧化物製作之太陽能電池 21
第三章 實驗流程與方法 25
3.1 n型鈷摻雜之二氧化錫 (Co-doped SnO2) 顆粒製備 27
3.2 p型氧化亞銅 (Cu2O) 奈米結構製備 29
3.3 n-Co-doped SnO2/p-Cu2O奈米結構太陽能電池之製備 31
3.4 實驗儀器簡介 34
3.4.1 場發射掃描電子顯微鏡與能量散佈分析儀 34
3.4.2 高解析度穿透式電子顯微鏡 36
3.4.3 X光繞射分析儀 38
3.4.4 紫外/可見光吸收光譜儀 39
3.4.5 太陽能電池效率量測系統 41
3.4.6 電漿系統 43
3.4.7 熱壓成型機 44
第四章 實驗結果與討論 45
4.1 以濕式化學法製備鈷摻雜二氧化錫顆粒 45
4.1.1 溶液pH值與直接成長Co-doped SnO2結構於試片表面對Co-doped SnO2結構形貌之影響 47
4.1.2 反應時間對Co-doped SnO2結構形貌之影響 52
4.1.3 氯化錫水合物濃度對Co-doped SnO2奈米結構形貌之影響 55
4.1.4 硫酸鈷水合物摻雜重量百分比以及退火處理對Co-doped SnO2奈米結構形貌之影響 58
4.2 Co-doped SnO2顆粒之X光繞射分析 62
4.3 Co-doped SnO2顆粒之微結構及成份分析 65
4.3.1 0.025 wt% Co-doped SnO2顆粒之結構及成份分析 65
4.3.2 0.075 wt% Co-doped SnO2顆粒之微結構及成份分析 68
4.4 Co-doped SnO2顆粒之紫外/可見光吸收光譜及其能隙分析 71
4.5 n-Sn1-xCoxO2奈米顆粒表面形貌、材料分析及其能隙之討論 76
4.5 水熱法成長Cu2O奈米結構 79
4.5.1 NaOH對於Cu2O奈米結構表面形貌之影響及其X光繞射分析 79
4.5.2 Cu2O顆粒之微結構及成份分析 82
4.5.3 Cu2O奈米結構之紫外/可見光吸收光譜及其能隙分析 85
4.6以氧化物奈米結構製作異質介面太陽能電池 88
4.6.1 經退火處理之Co-doped SnO2顆粒與Cu2O奈米結構之噴塗 88
4.6.2 熱壓製程前後之p-Cu2O與經過退火處理之n-Sn1-xCoxO2表面形貌及其剖面圖 91
4.6.3 不同重量百分比摻雜之Sn1-xCoxO2顆粒對於p-Cu2O/n -Sn1-xCoxO2異質介面太陽能電池效率影響 93
4.6.4 n-Sn0.86Co0.14O2/p-Cu2O奈米結構異質介面太陽能電池微區電子繞射及成份分析 100
4.6.5 n-Sn1-xCoxO2奈米顆粒與p-Cu2O奈米結構之材料特性對於太陽能電池效率影響之討論 103
第五章 結論 106
第六章 未來展望 108
參考文獻 109
[1] J. Goldemberg, Ethanol for A Sustainable Energy Future, Science, 315, 2007, 808-810
[2] M. I. Hoffert, K. Caldeira, A. K. Jain, E. F. Haites, L. D. Danny Harveyk, S. D. Potter, M. E. Schlesinger, S. H. Schneider, R. G.WattsI, T. L. Wigley and D. J. Wuebbles, Energy Implications of Future Stabilization of Atmospheric CO2 Content, Letter to Nature, 395, 1998, 881
[3] Energy Information Administration, International Energy Outlook 2010 – Highlights, 2010, 1-8
[4] Peter Lang, Emission Cuts Realities –Electricity Generation, 2010, 1-32
[5] G. F. Brown and J. Wu, Third Generation Photovoltaics, Laser & Photon. Rev, 3, 2009, 294-405
[6] N. S. Lewis, Toward Cost-Effective Solar Energy Use, Science, 315, 2007, 798-801
[7] D. M. Chapin, C. S. Fuller and G. L Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys., 25, 1954, 676-677
[8] J. Zhao, A. Wang and M. A. Green, 24.5% Efficiency Silicon PERT cells on MCZ Substrates and 24.7% Efficiency PERL Cells on FZ Substrates, Progress in Photovoltaics, 7, 1999, 471–474
[9] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, Solar Cell Efficiency Tables (version 35), Prog. Photovolt: Res. Appl., 18, 2010, 144-150
[10] G. Conibeer, Third-generation Photovoltaics, Materialstoday, 10, 2007, 42-50
[11] J. Zhao, A. Wang, M. A. Green and F. Ferrazza, Novel 19.8% Efficient ‘‘Honeycomb’’ Textured Multicrystalline and 24.4% Monocrystalline Silicon Solar Cells, Applied Physics Letters , 73, 1998, 1991–1993
[12] O. Schultz, S. W. Glunz and G. P. Willeke, Multicrystalline Silicon Solar Cells Exceeding 20% Efficiency, Progress in Photovoltaics: Research and Applications 12, 2004, 553–558
[13] R. B. Bergmann, T. J. Rinke, C. Berge, J. Schmidt and J. H. Werner. Advances in Monocrystalline Si Thin-film Solar Cells by Layer Transfer, Technical Digest, PVSEC-12, Chefju Island, Korea, June, 2001, 11–15.
[14] M. J. Keevers, T. L. Young, U. Schubert and M. A. Green, 10% efficient CSG Minimodules. 22nd European Photovoltaic Solar Energy Conference, Milan, September, 2007
[15] G. J. Bauhuis, P. Mulder, E. J. Haverkamp, J. C. C. M. Huijben and J. J. Schermer, 26.1% Thin-film GaAs Solar Cell Using Epitaxial Lift-off, Solar Energy Materials and Solar Cells, 93, 2009, 1488–1491
[16] R. Venkatasubramanian, B. C. O’Quinn, J. S. Hills, P. R. Sharps, M. J. Timmons, J. A. Hutchby, H. Field, A. Ahrenkiel and B. Keyes, 18.2% (AM1.5) Efficient GaAs Solar Cell on Optical-grade Polycrystalline Ge Substrate, Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington, May 1997, 31–36
[17] C. J. Keavney, V. E. Haven and S. M. Vernon. Emitter Structures in MOCVD InP Solar Cells, Conference Record, 21st IEEE Photovoltaic Specialists Conference, Kissimimee, May 1990, 141–144
[18] I. Repins, M. Contreras, Y. Romero, Y. Yan, W. Metzger, J. Li, S. Johnston, B. Egaas, C. DeHart, J. Scharf, B. E. Mccandless and R. Noufi, Characterization of 19.9%-efficienct CIGS Absorbers, IEEE Photovoltaics Specialists Conference Record, 2008, 33
[19] J. Kessler, M. Bodegard, J. Hedstrom and L. Stolt. New World Record Cu(In,Ga) Se2 Based Mini-module:16.6%. Proceedings of 16th European Photovoltaic Solar Energy Conference, Glasgow, 2000, 2057–2060
[20] X. Wu, J. C. Keane, R. G. Dhere, C. DeHart, A. Duda, T. A. Gessert , S. Asher,D. H. Levi and P. Sheldon. 16.5%-efficient CdS/CdTe Polycrystalline Thin-film Solar Cell. Proceedings of 17th European Photovoltaic Solar Energy Conference, Munich, 22–26 October 2001, 995–1000.
[21] J. Meier, J. Sitznagel, U. Kroll, C. Bucher, S. Fay, T. Moriarty and A. Shah. Potential of Amorphous and Microcrystalline Silicon Solar Cells. Thin Solid Films, 451–452, 2004, 518–524.
[22] K. Yamamoto, M. Toshimi, T. Suzuki, Y. Tawada, T. Okamoto and A. Nakajima, Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature. MRS Spring Meeting, San Francisco April 1998
[23] Y. Chiba, A. Islam, K. Kakutani, R. Komiya, N. Koide and L. Han. High Efficiency Dye Sensitized Solar Cells. Technical Digest, 15th International Photovoltaic Science and Engineering Conference, Shanghai, October 2005, 665–666.
[24] M. Morooka and K. Noda. Development of Dye-sensitized Solar Cells and Next Generation Energy Devices, 88th Spring Meeting of The Chemical Society of Japan,Tokyo, March 2008.
[25] M. Ohmori, T. Takamoto, E. Ikeda and H. Kurita. High Efficiency InGaP/GaAs Tandem Solar Cells. Tech. Digest, International PVSEC-9, Miyasaki, Japan, November 1996, 525–528.
[26] K. Mitchell, C. Eberspacher, J. Ermer and D. Pier. Single and Tandem Junction CuInSe2 Cell and Module Technology. Conference Record, 20th IEEE Photovoltaic Specialists Conference, Las Vegas, September 1988, 1384–1389.
[27] M. Yoshimi, T. Sasaki, T. Sawada, T. Suezaki, T. Meguro, T. Matsuda, K. Santo, K. Wadano, M. Ichikawa, A. Nakajima, K. Yamamoto. High Efficiency Thin Film Silicon Hybrid Solar Cell Module on Im2-class Large Area Substrate. Conference Record, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, May 2003, 1566–1569.
[28] A. Sha, P. Torres, R. Tscharner, N. Wyrsch and H. Keppner , Photovoltaic Technology: The Case for Thin-Film Solar Cells, Science, 285, 1999, 692-698
[29] M. A. Green, Solar Cells, 1982, 62-84
[30] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering , 2003, 61-111
[31] N. Nijegorodov and P. V. C. Luhanga, Air Mass" Analytical and Empirical Treatment ; an Improved Formula for Air Mass, Renewable Energy, 7, 1996, 57-65
[32] M. A. Green, Third Generation Photovoltaics:Ultra-High Conversion Efficiency at Low Cost, Prog. Photovolt: Res. 9, 2001, 123-135
[33] B. D. Yuhas and P. Yang, Nanowire-Based All-Oxide Solar Cells, J. Am. Chem. Soc., 131, 2009, 3756-3761
[34] M. Alberto, S. Enrico, S. Francesca, T. Mario and V. Rajaraman, Heterojunction Solar Cell with 2% Efficiency Based on a Cu2O Substrate, Applied Physics Letters 88, 2006, 163502-163503
[35] T. Minami, T. Miyata, K. Ihara, Y. Minamino and S. Tsukada, Effect of ZnO Film Deposition Methods on the Photovoltaic Properties of ZnO–Cu2O Heterojunction Devices, Thin Solid Films, 494, 2006, 47-52
[36] S. S. Jeonga, A. Mittiga, E. Salzaa, A. Mascia and S. Passerini, Electrodeposited ZnO/Cu2O Heterojunction Solar Cells, Electrochimica Acta, 53, 2008, 2226-2231
[37] J. Katayama1, K. Ito1, M. Matsuoka1 and J. Tamaki1, Performance of Cu2O/ZnO Solar Cell Prepared by Two-step Electrodeposition, Journal of Applied Electrochemistry, 34, 2004, 687-692
[38] J. Cui and U. J. Gibson, A Simple Two-Step Electrodeposition of Cu2O/ZnO Nanopillar Solar Cells, J. Phys. Chem. C114, 2010, 6408–6412
[39] P. W. Baumeister , Optical Absorption of Cuprous Oxide, Phys. Rev., 121, 1961, 359-362
[40] A. E. Rakrsiza and J. Varghese, Optical Absorption Coefficient and Thickness Measurement of Electrodeposited Films of Cu2O, Phys. Stat. Sol. (a) , 101, 1987, 479-486
[41] H.d Martens, J. P. Nielsen, and S. B. Engelsen, Light Scattering and Light Absorbance Separated by Extended Multiplicative Signal Correction. Application to Near-Infrared Transmission Analysis of Powder Mixtures, Anal. Chem.,75, 2003, 394-404
[42] M. Hernández-Vélez, Nanowires and 1D Arrays Fabrication: An Overview, Thin Solid Films, 495, 2006, 51
[43] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, One Dimensional Nanostructures: Synthesis, Characterization, and Applications, Adv. Mater. 15, 2003, 353-389
[44] L. Jiang, G. Sun, Z. Zhou, S. Sun,Q. Wang, S. Yan, H. Li, J. Tian, J. Guo, B. Zhou and Q. Xin, Size-Controllable Synthesis of Monodispersed SnO2 Nanoparticles and Application in Electrocatalysts, J. Phys. Chem. B 109, 2005, 8774-8778
[45] J. Hays, A. Punnoose, R. Baldner, M. H. Engelhard, J. Peloquin and K. M. Reddy, Relationship Between the Structural and Magnetic Properties of Co-doped SnO2 Nanoparticles, Phys. Rev. B, 72, 2005, 075203: 1-7
[46] A. Bouaine, G. Schmerber, C. Ulhaq-Bouillet, S. Colis and A. Dinia, Structural, Optical, and Magnetic Properties of Co-doped SnO2 Powders Synthesized by the Coprecipitation Technique, J. Phys. Chem. C, 111, 2007, 2924-2928
[47] JCPDS Detabase
[48] X. Zhang, X. M. Li, T. L. Chen, J. M. Bian and C. Y. Zhang. Structural and Optical Properties of Zn1-xMgxO Thin Films Deposited by Ultrasonic Spray Pyrolysis, Thin Solid Films, 492, 2005, 248-252
[49] G. K. Mor, O. K. Varghese, M. Paulose , K. G. Ong, C. A. Grimes, Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements, Thin Solid Film, 496, 2006, 46-48
[50] Y. Luo, S. Li, Q. Ren, J. Liu, L. Xing, Y. Wang, Y. Yu, Z. Jia, and J. Li, Facile Synthesis of Flowerlike Cu2O Nanoarchitectures by a Solution Phase Route, Crystal Growth & Design, 7, 2007, 87-92
[51] P. M. Jones, J. A. May, J. B. Reitz, and E. I. Solomon, Electron Spectroscopic Studies of CH3OH Chemisorption on Cu2O and ZnO Single-Crystal Surfaces: Methoxide Bonding and Reactivity Related to Methanol Synthesis, J. Am. Chem. Soc., 120, 1998, 1506-1516
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *