帳號:guest(3.12.161.77)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):江孟儒
論文名稱(中文):生胚密度差異所引發之燒結曲率與應力分析
論文名稱(外文):Effects of Green Density on Camber and Stress Development during Firing Low-temperature Cofired Ceramic System
指導教授(中文):簡朝和
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9731511
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:33
中文關鍵詞:低溫共燒陶瓷曲率燒結應力
相關次數:
  • 推薦推薦:0
  • 點閱點閱:275
  • 評分評分:*****
  • 下載下載:56
  • 收藏收藏:0
本研究主要探討硼矽玻璃(BSG)+氧化鋁(Al2O3)系統製作成的低、高生胚密度試片,於共燒時產生的曲率(camber)與應力(stress)。利用熱機械分析儀量測兩種試片在不同升溫速率下的收縮差異,以及單軸向黏度(uniaxial viscosity),並以同步照相方式觀察試片共燒時的曲率變化。將收縮率差值和曲率變化代入黏彈性模型(visco-elastic model),皆可計算不匹配應力,且兩者計算出的結果相近。由於不匹配應力遠小於燒結驅動力,共燒結構仍可達到高度緻密,共燒後的試片亦未發現任何缺陷。
1. 簡介………………………………………………………………….1
2. 實驗方法…………………………………………………………….3
2.1 原料…………………………………………………………...3
2.2 漿料備製……………………………………………………...3
2.3 刮刀製程……………………………………………………...3
2.4 疊壓…………………………………………………………...4
2.5 收縮量量測…………………………………………………...5
2.6 曲率觀察……………………………………………………...5
2.7 單軸向黏度量測……………………………………………...5
2.8 微結構觀察…………………………………………………...6
3. 結果與討論………………………………………………………….7
3.1 LD和HD的收縮行為. ………………………………………7
3.2 曲率的發展... ………………………………………………...8
3.3 討論... ……………………………………………………….10
4. 結論... ……………………………………………………………...16
5. 參考文獻... ………………………………………………………...17
[1] PW. Polinski, Sr., “Low Temperature Cofired Ceramic Packages for Microwave Gallium Arsenide Integrated Circuits,” US Pat. No. 4,899,118, 1990.
[2] M. Gongora-Rubio, L. M. Solá-Laguna, P. J. Moffett and J. J. Santiago-Avilés, “The Utilization of Low Temperature Co-fired Ceramics (LTCC-ML) Technology for Meso-Scale EMS, A Simple Thermistor Based Flow Sensor,” Sensor. Actuat. A, 73 [3] 5–221 (1999).
[3] J. H. Jean, C. R. Chang and Z. C. Chen, “Effect of Densification Mismatch on Camber Development during Cofiring Ni-Based Multilayer Ceramic Capacitors,” J. Am. Ceram. Soc., 80 [9] 2401-2406 (1997).
[4] J. H. Jean and C. R. Chang, “Camber Development during Cofiring Ag-Based Low-Dielectric-Constant Ceramic Package,” J. Mater. Res., 12 [10] 2743-2750 (1997).
[5] J. C. Chang and J. H. Jean, “Camber Development During the Cofiring of Bi-Layer Glass-Based Dielectric Laminate,” J. Am. Ceram. Soc., 88 [5] 1165–1170 (2005).
[6] R. T. Hsu and J. H. Jean, “Key Factors Controlling Camber Behavior During the Cofiring of Bi-Layer Ceramic Dielectric Laminates,” J. Am. Ceram. Soc., 88 [9] 2429–2434 (2005).
[7] F. F. Lange and M. Metcalf, “Processing-Related Fracture Origins: II, Agglomerate Motion and Cracklike Internal Surfaces Caused by Differential Sintering,” J. Am. Ceram. Soc., 66 [6] 398-406 (1983).
[8] P. Z. Cai, D. J. Green and G. L. Messing, “Constrained Densification of Al2O3/ZrO2 Hybrid Laminates: I, Experimental Observations of Processing Defects, ”J. Am. Ceram. Soc., 80 [8] 1929-1939 (1997).
[9] P. Z. Cai, D. J. Green and G. L. Messing, “Constrained Densification of Al2O3/ZrO2 Hybrid Laminates: II, Viscous Stress Computation,” J. Am. Ceram. Soc., 80 [8] 1940-1948 (1997).
[10] J. B. Ollagnier, O. Guillon, and J. Rodel, ‘‘Viscosity of LTCC Determined by Discontinuous Sinter-Forging,’’ Int. J. Appl. Ceram. Technol., 3 [6] 437–41 (2006).
[11] R. K. Bordia and G. W. Scherer, “On Constrained Sintering-I. Constitutive Model for a Sintering Body,” Acta. Metall., 36 [9] 2393-2397 (1988).
[12] R. K. Bordia and G. W. Scherer, “On Constrained Sintering-II. Comparison of Constitutive Models,” Acta. Metall., 36 [9] 2399-2409 (1988).
[13] S. Ho, C. Hillman, F. F. Lange and Z. Suo, “Surface Cracking in Layers under Biaxial, Residual Compressive Stress,” J. Am. Ceram. Soc., 78 [9] 2353-2359 (1995).
[14] T. Cheng and R. Raj, “Flaw Generation During Constrained Sintering of Metal-Ceramic and Metal-Glass Multilayer Films,” J. Am. Ceram. Soc., 72 [9] 1649-1655 (1989).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *