帳號:guest(3.145.112.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):姜智健
作者(外文):Chiang, Chih-Chien
論文名稱(中文):The Study of Resistance Switching Properties in One Dimensional Core-Shell Au-Ga2O3 Nanowires
論文名稱(外文):一維金-氧化鎵核殼奈米線的電阻轉換性質研究
指導教授(中文):周立人
指導教授(外文):Chou, Li-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9731518
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:57
中文關鍵詞:奈米線電阻轉換核殼奈米線金-氧化鎵氧化鎵電阻式記憶體
外文關鍵詞:NanowireResistance SwitchingCore ShellAu-Ga2O3gallium oxideRRAM
相關次數:
  • 推薦推薦:0
  • 點閱點閱:88
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
首先,我們將反應溫度控制在 800℃ 以及1 × 10 -2 壓力下利用150 nm的金粒子來優化金 -氧化鎵核殼奈米線的生長條件,並用 SEM 、 XRD 以及TEM 來分析奈米線的表面形貌,晶體結構和組成。然後透過搭配三軸調整器的光學顯微鏡以及標準電子束微影技術來製作奈米元件
接著,我們利用Keithley 4200 電流電壓量測儀器來測量氧化鎵奈米線和金-核殼氧化鎵奈米線的電流電壓特性和電阻轉換行為。為了要討論介面和金屬之間的電子傳導路徑,我們比較有無金-核奈米線的電阻轉換特性,也在金-核殼氧化鎵奈米線上設計了不同的電極距離,以及針對金-核殼氧化鎵奈米線直徑的元件進行研究。
At first, we tried to optimize the growth condition of Au-Ga2O3 core-shell nanowires with 150 nm Au particles under the reaction temperature of 800℃ and the pressure of 1×10-2 torr. Afterwards, we used SEM, XRD, TEM to analyze the surface morphology, crystalline structure and the composition of pure Ga2O3 nanowires and Au-Ga2O3 core-shell nanowires.
Besides, we fabricated the nanodevices by the optical microscope equipped with manipulator and a series of standard electron beam lithography (EBL) techniques.
Finally, we measured the I-V characteristics and resistive switching behaviors of the pure and core-shell Ga2O3 nanowires in Keithley 4200. We also designed nanodevices with different electrode distances and diameters to discuss the characteristics.
Content
Content I
The Index of Figures III
Abstract V
摘要 VI
Acknowledgement VII
Chapter 1 Introduction 1
1-1 Nanotechnology 1
1-2 One-Dimensional Nanostructures 2
1-2-1 Synthetical Method and Growth Mechanism of One-Dimensional Nanostructures 3
1-2-2 Vapor-Liquid-Solid (VLS) Method 4
1-3 Background Research 7
1-3-1 Properties of Gallium Oxide (Ga2O3) nanowires 7
1-3-2 Au-Ga2O3 Core-Shell nanowires 9
1-4 Resistive Switching Characteristics 10
1-5 Motivation and Research Directions 12
Chapter 2 Experimental Procedures 13
2-1 Synthesis of One-Dimensional Au-Ga2O3 Core-Shell Nanowires 13
2-2 Property Analysis 15
2-2-1 Surface Morphology Analysis by SEM 15
2-2-2 Crystalline Structure Analysis by X-ray diffraction 15
2-2-3 Structure and Composition Analysis by HRTEM 16
2-3 Nanodevice Fabrication 17
2-3-1 Chip Cleaning 19
2-3-2 Sample Preparation and Pick up nanowires 19
2-3-3 Locate nanowires and Design pattern 21
2-3-4 Photoresist Spin Coating and Soft Baking 21
2-3-5 Electron Beam Lithography 22
2-3-6 Development 22
2-3-7 Thermal Evaporation 23
2-3-8 Lift-Off Process 24
2-3-9 Device Evaluation 24
2-4 I-V Measurements 26
Chapter 3 Results and Discussion 28
3-1 Optimization the Growth of Au-Ga2O3 Core-Shell Nanowires 28
3-2 Properties Analysis 30
3-2-1 Surface morphology analysis 30
3-2-2 Crystalline structure analysis 30
3-2-3 Structure and Composition Analysis 32
3-2-4 Electricity Analysis 35
3-3 The Resistive Switching Characteristics of Au-Ga2O3 Core-Shell Nanowires 38
3-3-1 The Conducting Path in Core-Shell Nanowires 41
3-3-2 The Electrode Distance in the Forming Process 43
3-3-3 The Behaviors of Resistive Switching 46
3-3-4 The Resistive Switching Behavior of Different Diameters 48
Chapter 4 Summary and Conclusions 51
References 52
References
[1-1] J. M. Krans, J. M. van Rultenbeek, V. V. Fisun, I.K. Yanson, and L. J. de Jongh, ”The signature of conductance quantization in metallic point contacts”, Nature, 375, (1995), pp.767-769.

[1-2] D. K. Sarkar, D. Brassard, and M. A. El Khakani, ”Single-electron tunneling at room temperature in TixSi1−xO2 nanocomposite thin films”, Appl. Phys. Lett., 87, (2005), pp.253108-253110.

[1-3] G. Markovich, C. P. Cllier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, ”Architectonic Quantum Dot Solids”, Acc. Chem. Res., 32, (1999), pp.415-423.

[1-4] M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, ”Resonant tunneling of electrons via 20 nm scale InAs Quantum dot and magnetotunneling spectroscopy of its electronic states”, Appl. Phys. Lett., 70, (1997), pp.6-8.

[1-5] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, ”Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device”, Science, 286, (1999), pp.1550-1552.

[1-6] M. T. Bjo‥ rk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelsonb, ”Nanowire resonant tunneling diodes”, Appl. Phys. Lett., 81, (2002), pp.4458-4460.

[1-7] S. Iijima, ”Helical microtubules of graphitic carbon”, Nature, 354, (1991), pp.56-58.

[1-8] I.H. Inoue, S. Yasuda, H. Akinaga, and H. Takagi, ”Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution”, Physical Review B., 77, 035105 (2008)

[1-9] M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, and S. Ahn, ” Electrical Manipulation of Nanofilaments in Transition-Metal Oxides for Resistance-Based Memory”, Nano Lett., 9 (4), pp 1476–1481 (2009)

[1-10] D. B. Strukov, G. S. Snider, D. R. Stewart, R. S. Williams, ” The missing memristor found”, Nature., 453, 80-83 (2008)

[1-11] Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon”, Science, 281, (1998), pp.973-975.

[1-12] Y. Zhang, T. Ichihashi, E. Landree, F. Nihey and S. Iijima “Heterostructures of Single-Walled Carbon Nanotubes and Carbide Nanorods”, Science, 285, (1999), pp.1719-1722.

[1-13] Y. Cui1 and C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks” ,Science, 291, (2001), pp.851-853.
[1-14] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks”, Science, 294, (2001), pp.1313-1317.

[1-15] J. Hu, L. S. Li, W. Yang, L. Manna, L. W. Wang, and A. P. Alivisatos, ”Linearly Polarized Emission from Colloidal Semiconductor Quantum Rods”, Science, 292, (2001), pp.2060-2063.

[1-16] R. S. Wagner, and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Growth”, Appl. Phys. Lett., 4, (1964), pp.89-90.

[1-17] T. Hanrath, and B. A. Korgel, “Nucleation and Growth of Germanium Nanowires Seeded by Organic Monolayer-Coated Gold Nanocrystals”, J. Am. Chem. Soc., 124, (2002), pp.1424-1429.

[1-18] M. Walther, E. Kapon, J. Christen, D. M. Hwang, and R. Bhat, “Carrier capture and quantum confinement in GaAs/AIGaAs quantum wire lasers grown on V-grooved substrates”, Appl. Phys. Lett.,60, (1992), p.521-523.
[1-19] M. Paulose, O. K. Varghese, and C. A. Grimes, “Synthesis of Gold-Silica Composite Nanowires through Solid-Liquid-Solid Phase Growth”, J. Nanosci. Nanotech,3, (2003), pp.341-346.

[1-20] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, S. Q. Feng, “Ga2O3 nanowires prepared by physical evaporation”, Solid State Communications., 109, (1999) pp.677–682

[1-21] C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires”, Nano Lett., 8 (10), (2008)

[1-22] R. Waser, and M. Aono, “Nanoionics-based resistive switching memories”, Nature Materials., 6, (2007) pp.833 – 840

[1-23] A. Sawa, “Resistive switching in transition metal oxides”, materialstoday., 11 (6), (2008) pp.28-36
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *