帳號:guest(3.145.171.58)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱慧捷
作者(外文):Chu, Hwei-Jay
論文名稱(中文):聚苯胺導電高分子的填充對鋁膠電極與矽太陽能電池性質的影響
論文名稱(外文):The influences of conducting polymer polyaniline filling on the properties of aluminum paste electrode and fabricated Si-based solar cell
指導教授(中文):戴念華
指導教授(外文):Tai, Nyan-Hwa
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9731522
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:74
中文關鍵詞:聚苯胺導電高分子複合電極鋁膠電極矽太陽能電池
外文關鍵詞:polyanilineconducting polymercomposite electrodealuminum paste electrodeSi-based solar cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
本研究探討以聚苯胺導電高分子填充鋁膠多孔電極,使電極的
鋁顆粒被聚苯胺薄層所包覆,形成複合結構,此結構可提升電極導電
性、矽太陽能電池光電轉換效率與電池環境耐受度。本實驗選擇不同
合成條件的聚苯胺進行鋁膠電極填充,探討的重點包含鋁膠電極導電
度的提升、電池光電轉換效率的變化以及環境耐受度的測試。
在聚合實驗中,選擇乳化劑與摻雜酸作為操縱參數,討論乳化
劑與摻雜酸的選擇對產物熱穩定性與導電性的影響,以及它們在聚合
反應中扮演的角色。鋁膠電極的導電性會因為聚苯胺的塗佈而改變,
本研究以電性量測結果配合電子傳遞的可能機制,確認聚苯胺填充的
相關參數對此複合電極電性的影響,並由此討論提高導電性的可行
性。填充聚苯胺後電池光電轉換效率的變化,主要藉由分析電池的
串、並聯電阻,確認聚苯胺包覆層對電池相關參數的影響,本研究發
現此處理可使電池效率提升約0.66 %。最後,為確認此處理對鋁膠電
極環境耐受度的影響,本研究利用水熱處理與腐蝕實驗分別測試此複
合電極的抗氧化能力與抗腐蝕能力。
This study investigated the influence of conducting polymer
polyaniline on the electric properties of the porous aluminum paste
electrode. After the filling treatment, the aluminum particles of the porous
aluminum paste electrode were covered by a thin layer of PAni. The
formation of composite electrode structure leads to increase of electric
conductivity of electrode, cell efficiency, and endurance level of the cell
were investigated in depth.
In the PAni synthesis experiment, the effects of the dispersant and
the doping acid on the thermal stability and the conductivity of the
products were studied. In the electric conductivity, the effects of PAni
coating on the conductivity of the composite electrode can be explained
by the electron transport mechanism. In the cell efficiency experiment,
the effects of the presence of the PAni coating layers on the cell
efficiency were attributed to the series and shunt resistance. In the
endurance experiment, the hydrothermal and the corrosion tests were
adopted to study the anti-oxidative and the anti-corrosive capacities
individually.
Based on this study, the conductivity of the electrode was enhanced
which is attributed to both the improvement of the electric properties of
PAni and the formation of the composite electrode structure. Thus the cell
efficiency and the endurance level were improved, and the highest
increment of the cell efficiency in this study was 0.66 %.
摘要 .......................................................................................................... I
Abstract ................................................................................................... II
誌謝 ........................................................................................................ III
目錄 ......................................................................................................... V
表目錄 .................................................................................................. VIII
圖目錄 .................................................................................................... IX
第一章 緒論 ........................................................................................ 1
1-1 前言 ........................................................................................ 1
1-2 文獻回顧 ................................................................................ 2
1-2-1 複合電極 ....................................................................... 2
1-2-2 有機共軛導電高分子 .................................................... 2
1-2-3 導電高分子的導電機制與能帶理論 ............................. 3
1-2-4 聚苯胺 ........................................................................... 5
1-2-5 聚苯胺的聚合機制 ........................................................ 6
第二章 研究背景與方法 ................................................................... 11
2-1 研究背景與動機 .................................................................... 11
2-2 研究策略與架構 .................................................................... 12
VI
2-2-1 研究策略 ..................................................................... 12
2-2-2 研究架構 ..................................................................... 17
第三章 實驗方法與步驟 ................................................................... 20
3-1 實驗藥品 ............................................................................... 20
3-2 聚苯胺的合成 ....................................................................... 20
3-3 聚苯胺熱壓成型 .................................................................... 21
3-4 電極試片製備 ....................................................................... 21
3-5 環境耐受度測試 .................................................................... 21
3-6 設備與儀器鑑定 .................................................................... 22
第四章 結果與討論 .......................................................................... 26
4-1 聚苯胺性質分析 .................................................................... 26
4-2 電極電性之結果與討論 ........................................................ 29
4-2-1 聚苯胺填充鋁膠電極的形貌鑑定 .............................. 29
4-2-2 鋁膠電極的性質鑑定 .................................................. 29
4-2-3 聚苯胺填充鋁膠電極的電性分析 .............................. 30
4-2-4 聚苯胺填充鋁膠電極的理論模擬 .............................. 31
4-2-5 鋁顆粒與聚苯胺的交互作用 ...................................... 35
4-2-6 鋁膠電極的氧化結構含量對複合電極的電性影響 ... 36
4-3 電池效率之結果與討論 ........................................................ 37
VII
4-4 環境耐受度分析 .................................................................... 39
4-4-1 水熱測試 ..................................................................... 39
4-4-2 腐蝕測試 ..................................................................... 42
第五章 結論 ...................................................................................... 69
參考文獻 ............................................................................................... 71
[1] Antonio Luque and Steven Hegedus, Handbook of Photovoltaic Science and
Engineering: WILEY, 2003.
[2] J. M. Gloaguen and J. M. Lefebvre, "Plastic deformation behaviour of
thermoplastic/clay nanocomposites," Polymer, vol. 42, pp. 5841-5847, 2001.
[3] Keiichi Asami, et al., "Composite sheet electrode," United States Patent
5,489,492, February 6, 1996, 1996.
[4] A Angeli and L Alessandri, Gazzetta Chimica Italiana, vol. 46, 1916.
[5] Hideki Shirakawa and S. Ikeda, "Infrared Spectra of Poly(acetylene)," Polymer
Journal, vol. 2, November 9 1970.
[6] Hideki Shirakawa, et al., "Synthesis organic polymer halogen derivatives of
polyacetylene,(CH)x," Journal of the Chemical Society,Chemical
Communications, vol. 09, 1977.
[7] 謝宏明 and 林俊甫, "共軛高分子的電子結構與相關特性研究," 化學,
2008.
[8] 吳偉誠, "以不同界面活性劑行苯胺的乳化聚合," 碩士, 材料科學研究所,
國立中山大學, 1990.
[9] A.J. Epstein, et al., "Insulator-to-metal transition in polyaniline: Effect of
protonation in emeraldine," Synthetic Metals, vol. 21, pp. 63-70 1987.
[10] A. G. Macdiarmid, et al., "Polyaniline: a new concept in conducting polymers,"
Synthetic Metals, vol. 18, pp. 285-290, 1987.
[11] A. J. Epstein, et al., "Inhomogeneous disorder and the modified Drude
metallic state of conducting polymers," Synthetic Metals, vol. 65, pp. 149-157,
1994.
[12] S.-P. Lee, et al., "A study on synthesis and characterization of the core-shell
materials of Mn1-xZnxFe2O4-polyaniline," Materials Science and Engineering:
B, vol. 143, pp. 1-6, 2007.
[13] Tamara C. Cristescu and Anna Christina Nobre, "Differential modulation of
word recognition by semantic and spatial orienting of attention," Journal of
Cognitive Neuroscience, vol. 20, May 2008.
[14] X. Li, et al., "Preparation of polyaniline-modified TiO2 nanoparticles and their
photocatalytic activity under visible light illumination," Applied Catalysis B:
Environmental, vol. 81, pp. 267-273, 2008.
[15] Alan G. MacDiarmid and Arthur J. Epstein, "Polyanilines: a novel class of
72
conducting polymers," Faraday Discussions of the Chemical Society, vol. 88,
1989.
[16] 陳新瑜, "一、聚苯胺於非水溶液之電化學行為的研究 二、含氟衍生聚苯
胺之合成、鑑定暨應用," 博士, 化學系, 國立清華大學, 2007.
[17] S. Ananda Kumar, et al., "Corrosion resistant behaviour of PANI-metal bilayer
coatings," Progress in Organic Coatings, vol. 62, pp. 285-292, 2008.
[18] 呂振嘉, "鍍鋅鋼板之腐蝕與電化學行為," 碩士, 機械工程學系, 國立中央
大學, 2008.
[19] Edson Giuliani R. Fernandes, et al., "Electrical properties of electrodeposited
polyaniline nanotubes," Journal of Materials Science: Materials in Electronics,
vol. 19, August 2 2007.
[20] Shackle Dale R., "Conductive-polymer-coated electrode particles," United
States Patent 6,174,623, 2001.
[21] Che-Hsiung Hsu, "Electrically conducting organic polymer/nanoparticle
composites and methods for use thereof," United States Patent 7,317,047,
2008.
[22] Che-Hsiung Hsu, et al., "Electrically conductive polymer compositions,"
United States Patent 7,638,072, 2009.
[23] A. Mirmohseni and R. Solhjo, "Preparation and characterization of aqueous
polyaniline battery using a modified polyaniline electrode," European Polymer
Journal, vol. 39, pp. 219-223, 2003.
[24] A. Mirmohseni and A. Oladegaragoze, "Anti-corrosive properties of
polyaniline coating on iron," Synthetic Metals, vol. 114, pp. 105-108, 2000.
[25] Lalgudi V. Ramanathan, "Corrosion and Protection of Spent Al-Clad Research
Reactor Fuel During Extended Wet Storage," presented at the 2009
International Nuclear Atlantic Conference - INAC 2009, Rio de Janeiro,RJ,
Brazil, 2009.
[26] Gerald S. Frankel and Richard L. McCreery, "Characterization of Corrosion
Interfaces by the Scanning Kelvin Probe Force Microscopy Technique," Journal
of The Electrochemical Society, vol. 148, May 2001.
[27] V. N. Prigodin, et al., "Electric Field Control of Charge Transport in Doped
Polymers," Synthetic Metals, vol. 153, pp. 157-160, 2005.
[28] V. N. Prigodin and A. J. Epstein, "Quantum hopping in metallic polymers,"
Physica B: Condensed Matter, vol. 338, pp. 310-317, 2003.
[29] A. J. Epstein, et al., "Doped Conducting Polymer-Based Field Effect Devices,"
Synthetic Metals, vol. 137, pp. 859-861, 2003.
[30] V. N. Prigodin and A. J. Epstein, "Nature of insulator-metal transition and
novel mechanism of charge transport in the metallic state of highly doped
73
electronic polymers," Synthetic Metals, vol. 125, pp. 43-53, 2001.
[31] A. J. Epstein, et al., "Corrosion protection of aluminum and aluminum alloys
by polyanilines: A potentiodynamic and photoelectron spectroscopy study,"
Synthetic Metals, vol. 102, pp. 1374-1376, 1999.
[32] C. T. Kwok, et al., "Cavitation erosion and corrosion behaviors of
laser-aluminized mild steel," Surface and Coatings Technology, vol. 200, pp.
3544-3552, 2006.
[33] A. Sezer, et al., "Nonlinear optical properties of conducting polyaniline and
polyaniline-Ag composite thin films," Chemical Physics Letters, vol. 477, pp.
164-168, 2009.
[34] S. Virji, et al., "Polyaniline Nanofiber−Metal Salt Composite Materials for
Arsine Detection," Chemistry of Materials, vol. 21, pp. 3056-3061, 2009.
[35] N. V. Bhat, et al., "Simultaneous polymerization and crystallization of aniline,"
Synthetic Metals, vol. 130, pp. 185-192, 2002.
[36] J. Szlufcik, et al., "Low cost industrial technologies of crystalline silicon solar
cells," in Solar Cells, M. Tom and C. Luis, Eds., ed Oxford: Elsevier Science,
2005, pp. 89-120.
[37] S. S. Srinivasan, et al., "Reversible hydrogen storage in electrospun polyaniline
fibers," International Journal of Hydrogen Energy, vol. 35, pp. 225-230, 2010.
[38] S. Bhadra, et al., "Progress in preparation, processing and applications of
polyaniline," Progress in Polymer Science, vol. 34, pp. 783-810, 2009.
[39] I. Sedenková, et al., "Thermal degradation of polyaniline films prepared in
solutions of strong and weak acids and in water - FTIR and Raman
spectroscopic studies," Polymer Degradation and Stability, vol. 93, pp.
2147-2157, 2008.
[40] I. Sedenková, et al., "Conformational transition in polyaniline films -
Spectroscopic and conductivity studies of ageing," Polymer Degradation and
Stability, vol. 93, pp. 428-435, 2008.
[41] L. Brozová, et al., "The stability of polyaniline in strongly alkaline or acidic
aqueous media," Polymer Degradation and Stability, vol. 93, pp. 592-600,
2008.
[42] X. Ma, et al., "Preparation of polyaniline-TiO2 composite film with in situ
polymerization approach and its gas-sensitivity at room temperature,"
Materials Chemistry and Physics, vol. 98, pp. 241-247, 2006.
[43] W. Pan, et al., "Electrical and structural analysis of conductive
polyaniline/polyacrylonitrile composites," European Polymer Journal, vol. 41,
pp. 2127-2133, 2005.
[44] X. Li, et al., "Chlorine ion sensor based on polyaniline film electrode," Sensors
74
and Actuators B: Chemical, vol. 97, pp. 144-147, 2004.
[45] V. V. Chabukswar, et al., "Acrylic acid doped polyaniline as an ammonia
sensor," Sensors and Actuators B: Chemical, vol. 77, pp. 657-663, 2001.
[46] M. Maxfield, et al., "Alloy/conducting-polymer composite electrodes:
electrolytes, cathodes, and morphology," Journal of Power Sources, vol. 26, pp.
93-102, 1989.
[47] M. Shabani-Nooshabadi, et al., "Electropolymerized polyaniline coatings on
aluminum alloy 3004 and their corrosion protection performance,"
Electrochimica Acta, vol. 54, pp. 6989-6995, 2009.
[48] S.-F. Chung, et al., "Influence of dopant size on the junction properties of
polyaniline," Materials Science and Engineering B, vol. 116, pp. 125-130,
2005.
[49] N. A. Ogurtsov, et al., "Corrosion inhibition of aluminum alloy in chloride
mediums by undoped and doped forms of polyaniline," Synthetic Metals, vol.
143, pp. 43-47, 2004.
[50] A. Calderone, et al., "A theoretical investigation of the aluminum/polyaniline
interface," Synthetic Metals, vol. 57, pp. 4620-4625, 1993.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *