帳號:guest(18.221.58.143)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王裕平
作者(外文):Wang, Yu-Ping
論文名稱(中文):以溶液方式成長親水性蒽衍生物半導體層用以製作選擇性有機薄膜電晶體
論文名稱(外文):Selective Growth of Hydrophilic Anthracene Derivative as a Semiconductor Layer for Organic Thin Film Transistors via Solution-Process
指導教授(中文):游萃蓉
指導教授(外文):Yew, Tri-Rung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9731528
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:81
中文關鍵詞:有機薄膜電晶體蒽衍生物選擇性成長溶液製程親水性
外文關鍵詞:Organic Thin Film TransistorAnthracene DerivativeSelective GrowthSolution-processHydrophilic
相關次數:
  • 推薦推薦:0
  • 點閱點閱:101
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
  本研究合成一種具有羧酸基團 (carboxylic group) 的蒽 (anthracene) 衍生物 (anthracenetetracarboxylic acid,ATC) ,利用蒽衍生物材料主體的半導體性質,配合接上之羧酸基團的親水性,可使其在溶液環境中,選擇性成長在親水性表面改質後的二氧化矽 (SiO2) 閘極介電層上,且位於源極與汲極金屬之間,直接形成薄膜有機電晶體 (organic thin film transistor, OTFT) 。
  為了達到未來應用於軟性電子低成本 (大面積塗佈印刷製作) 、低溫 (< 200 □C) 之製程需求,及整合於未來積體電路產業之應用,本研究目標包括:第一,使有機半導體材料溶於毒性較低之溶劑中,大量使用此半導體材料與溶劑進行溶液製程時,不致破壞環境;第二,利用溶液製程,在一般大氣環境下使有機半導體薄膜選擇性成長在所需之位置,進一步節省成本。結果顯示,本研究成功的合成出含羧酸基團之蒽衍生物ATC,並利用其獨特之親水性,可於低毒性之親水性溶液環境中,選擇性成長有機半導體薄膜在親水性表面改質後的閘極介電層上,直接形成有機電晶體元件。此有機電晶體元件,可於一般大氣環境中量測其場效電晶體特性,其電子遷移率約為10-2 cm2V-1s-1,起始電壓約為-1.5 V,且開關電流比 (Ion/Ioff) 約為102,足以驗證此半導體材料ATC具備應用於未來軟性電子之可能性。
In this study, a novel anthracene derivative, anthracenetetracarboxylic acid (ATC) , was synthesized for organic thin film transistors (OTFTs) . This anthracene derivative, with the semiconductor properties of its core, was functionalized with carboxylic groups on 2, 3:6, 7 positions. With these hydrophilic carboxylic acid groups, ATC could be selective grown onto the gate dielectric layer (SiO2) modified with hydrophilic self-assembled monolayer (SAM), located between the source and drain metal, to form OTFTs via solution process directly.
In order to meet the requirements of low-cost (large-area printing production), low process temperature (<200 □C) for future flexible electronics applications and the feasibility to be integrated with integrated circuits, this research is mainly focused on the following two major goals. Firstly, to avoid of the damages of the ecological environment, it is important to improve the solubility of organic semiconductors in environmentally friendly solvents. Secondly, via solution processes, selective growth of organic semiconductor film directly on the selected location is developed to reduce the process cost. Results showed that anthracene derivative ATC could be successfully synthesized. With its unique hydrophilic property and the use of environmentally friendly hydrophilic solvent, selective growth of ATC organic semiconductor film on gate dielectric modified with hydrophilic SAM was achieved to form OTFTs directly. Transistor characteristics of such OTFTs were measured in air, with a mobility of about 10-2 cm2V-1s-1, a threshold voltage of -1.5 V and an on/off current ratio about 102. Results above have demonstrated the feasibility of using solution-processed, hydrophilic organic semiconductor ATC for OTFTs fabrication and future flexible electronics application.
摘要 I
Abstract II
誌謝 IV
目錄 VII
圖示目錄 X
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 有機薄膜電晶體 (OTFTs) 2
1-3 OTFT結構與工作原理 4
1-4 OTFT元件效能參數及其擷取 7
1-4-1 載子遷移率 (Mobility, μ) 7
1-4-2 起始電壓 (Threshold Voltage, VT) 8
1-4-3 開關電流比 (on/off current ratio, Ion/Ioff) 9
1-5有機半導體 (OSC) 傳導機制 10
第二章 文獻回顧 12
2-1 有機薄膜電晶體 (OTFTs) 之發展 12
2-2 選擇性成長OTFT之主動層 15
第三章 研究流程與方法 17
3-1 蒽衍生物 (ATC) 之合成 18
3-2 基板製備 26
3-3 基板上表面預處理及其特性分析 26
3-4 薄膜製備及選擇性有機薄膜電晶體元件之製作 28
3-5 分析儀器 30
3-5-1 核磁共振儀 (Nuclear Magnetic Resonance, NMR) 30
3-5-2 傅立葉變換紅外光譜儀 (Fourier Transform Infrared Spectroscopy, FTIR ) 32
3-5-3 高解析質譜儀 (High-resolution Mass Spectrometer, HR-Mass) 33
3-5-4 循環伏安法 (Cyclic Voltammetry, CV) 34
3-5-5 紫外光/可見光光譜儀 (UV-Vis Spectrophotometer)與螢光光譜儀 (Photoluminescence Spectrophotometer) 35
3-5-6 原子力顯微鏡 (Atomic Force Microscope, AFM) 37
3-5-7 接觸角量測儀 (Contact Angle Meter) 38
3-5-8 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 39
3-5-9 螢光光學顯微鏡 (Fluorescence Microscope) 40
3-5-10 X光繞射分析儀 (X-Ray Diffractometer) 41
3-5-11 電性量測儀 (Semiconductor Parameter Analyzer) 42
第四章 研究結果與討論 43
4-1 ATC材料合成及鑑定 43
4-2 光學性質與能帶分析 48
4-3 ATC材料鑑定與能帶分析之討論 52
4-4 底接觸電極表面疏水處理 53
4-5 閘極介電層表面親水處理之參數最佳化 54
4-6 基板表面預處理之討論 57
4-7 薄膜製程參數最佳化 58
4-8 選擇性成長ATC於親水性改質後之閘極介電層表面 61
4-9 選擇性成長ATC薄膜與製程參數最佳化之討論 63
4-10 結晶結構分析 64
4-11 OTFT元件特性探討 68
4-12 OTFT元件特性與結晶結構、表面形貌之討論 73
第五章 結論 74
第六章 未來展望 76
參考文獻 77
本研究產出之論文發表 81
[1 ] R. A. Street, Thin-Film Transistors, Adv. Mater. 2009, 21, 2007-2022
[2 ] S. Lee, B. Koo, J. Shin, E. Lee, H. Park and H. Kim, Effects of Hydroxyl Groups in Polymeric Dielectrics on Organic Transistor Performance, Appl. Phys. Lett., 2006, 88, 162109:1-3
[3 ] S. K. Park, T. N. Jackson, J. E. Anthony and D. A. Mourey, High Mobility Ssolution Processed 6,13-bis(triisopropyl-silylethynyl) Pentacene Organic Thin Film Transistors, Appl. Phys. Lett., 2007, 91, 063514:1-3
[4 ] B. C. Shekar, J. Lee and S. W. Rhee, Organic Tthin Film Transistors: Materials, Processes and Devices, Korean, J. Chem. Eng., 2004, 21 (1), 267-285
[5 ] A. Facchetti, Semiconductors for Organic Transistors, Material Today, 2007, 10 (3), 28-37
[6 ] C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. Brédas, P. C. Ewbank and K. R. Mann, Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors, Chem. Mater., 2004,16, 4436-4451
[7 ] H. S. Nalwa, Handbook of organic electronics and photonics: Electronic materials and devices, American Scientific Publishers, 2006
[8 ] P. W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev., 1958, 109, 1492-1505
[9 ] A. Miller and E. Abrahams, Impurity Conduction at Low Concentrations, Phys. Rev., 1960, 120,745-755
[10 ] G. Horowitz, Organic Field-Effect Transistors, Adv. Mater., 1998, 10 (5), 365-377
[11 ] D. F. Barbe and C. R. Westgate, Surface State Parameters of Metal-free Phthalocyanine Single Crystals, J. Phys. Chem. Solids., 1970, 31, 2679-2687
[12 ] F. Ebisawa, T. Kurokawa and S. Nara, Electrical Properties of
Polyacetylene/polysiloxane Interface, J. Appl. Phys., 1983, 54, 3255:1-5
[13 ] H. Koezuka, A. Tsumura and T. Ando, Field-effect transistor with polythiophene thin film, Synth. Met., 1987, 18, 699-704
[14 ] H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, C. M. Hart, E. Cantatore, P. T. Herwig, A. J. J. M. van Breemen and D. M. de Leeuw, Plastic Transistors in Active-matrix Displays, Nature, 2001, 414, 599-599
[15 ] Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates and M. McCreary, Electronic Paper: Flexible Active-matrix Electronic Ink Display, Nature, 2003, 423, 136-136
[16 ] Fabrication of Electronics on a Flexible Substrate using Self-Aligned Imprint Lithography (SAIL), presented at International Meeting on Information Display, Summer 2007
[18 ] A. L. Briseno, S. C. B. Mannsfeld, M. M. Ling, S. Liu, R. J. Tseng, C. Reese, M. E. Roberts, Y. Yang, F. Wudl and Z. Bao, Patterning Organic Single-crystal Transistor Arrays, Nature, 2006, 444, 913-913
[19 ] S. C. B. Mannsfeld, A. Sharei, S. Liu, M. E. Roberts, I. McCulloch, M. Heeney and Z. Bao, Highly Efficient Patterning of Organic Single-Crystal Transistors from the Solution Phase, Adv. Mater., 2008, 20, 4044-4048
[20 ] J. L. Morris, C. L. Becker, F. R. Fronczek, W. H. Daly and M. L. McLaughlin, Synthesis of Extended Linear Aromatics Using Tandem Diels-Alder Aromatization Reactions, J. Org. Chem, 1994, 21, 6484-6486
[21 ] Dimethyl Sulfoxide (DMSO)- A “New” Clean, Unique, Superior Solvent, presented at American Chemical Society Annual Meeting, Summer, 2000
[22 ] J. P. Hornak, HThe Basics of NMR
(http://www.cis.rit.edu/htbooks/nmr/)
[23 ] 陳陵援,儀器分析,三民書局,1991
[24 ] 李遠鵬,霍氏轉換紅外光譜儀簡介,科儀新知,1983, 4 (3), 29
[25 ] S.H. Cohen and M. L. Lightbody,H Atomic Force Microscopy/scanning Tunneling Microscopy, NewYork: Kluwer Academic/Plenum Publishers, 1999
[26 ] 林敬二,林宗義,材料分析,美亞出版有限公司,1994
[27 ] K. R. J. Thomas, J. T. Lin, Y. T. Tao and C. W. Ko, New Star-Shaped Luminescent Triarylamines: Synthesis, Thermal, Photophysical, and Electroluminescent Characteristics, Chem. Mater., 2002,14, 1354-1361
[28 ] N. Martín, E. Ortí, L. Sánchez, P. M. Viruela and R. Viruela, A New Type of -Electron Donors with One Dithiole Unit: Substituted 7-(1,3-Dithiol-2-ylidene)-7-hydrobenz[d,e]anthracenes, Eur. J. Org. Chem., 1999, 5, 1239-1247
[29 ] S. Grimme, M. Steinmetz and M. Korth, How to Compute Isomerization Energies of Organic Molecules with Quantum Chemical Methods, J. Org. Chem., 2007, 72, 2118-2126
[30 ] J. Rissler, Effective Conjugation Length of π-conjugated Systems, Chem. Phys. Lett., 2004, 395, 92-96
[31 ] Q. J. Cai, M. B. Chan-Park, Q. Zhou, Z. S. Lu, C. M. Li and B. S. Ong, Self-assembled Monolayers Mediated Charge Injection for High performance Bottom-contact Poly(3,3′′′-didodecylquaterthiophene) Thin-film Transistors, Org. Electron., 2008, 9, 936-943
[32 ] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa and Y. Iwasa, Control of Carrier Density by Self-assembled Monolayers in Organic Field-effect Transistors Nat. Mater., 2004, 3, 317-322
[33 ] D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu and K. Cho, Enhancement of Field-Effect Mobility Due to Surface-Mediated Molecular Ordering in Regioregular Polythiophene Thin Film Transistors, Adv. Func. Mater., 2005, 15, 77-82
[34 ] S. Mohapatra, B.T. Holmes, C. R. Newman, C. F. Prendergast, C. D. Frisbie, M. D. Ward, Organic Thin-Film Transistors Based on Tolyl-Substituted Oligothiophenes, Adv. Funct. Mater., 2004, 14, 605-609
[35 ] H. Klauk, G. Schmid, W. Radlik, W. Weber, L. Zhou, C. D. Sheraw, J. A. Nichols and T. N. Jackson, Contact Resistance in Organic Thin Film Transistors, Solid-state Electron., 2003, 47, 297-301
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *