帳號:guest(18.220.136.165)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊英駿
作者(外文):Chuang, Ying-Chun
論文名稱(中文):非晶質氧化銦鋅鋁(IAZO)之材料特性分析
論文名稱(外文):Characterization of Amorphous Indium-Aluminium-Zinc Oxide
指導教授(中文):甘炯耀
指導教授(外文):Gan, Jon-Yiew
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9731550
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:98
中文關鍵詞:非晶質氧化銦鋅鋁
相關次數:
  • 推薦推薦:0
  • 點閱點閱:85
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
薄膜電晶體是電子電路中基本的元件,隨著科技的發展,其不僅有縮小化的需求,也已朝向可撓式與透光式元件邁進。而在其中,通道層之特性也是影響整個元件表現之重要因素之一,其基本需求在於低載子濃度與高載子遷移率,而為鍍製於可撓式基板上,其製程之溫度需在低溫下進行(因為基板無法承受高溫);再者,為了使整個元件能夠透光,此層材料也需為透明。目前最為廣為運用之材料為非晶矽,也有人使用有機材料與非晶質氧化物半導體當作此層材料。而非晶質氧化物之優勢在於第一、其可在低溫下鍍製,第二、其載子遷移率不會因為晶格扭曲(非晶質狀態)而大幅下降(相較於非晶矽而言),第三、由於能隙約在3 eV附近,因此其還有在可見光範圍下為透明這附加優點。目前最被廣為研究為非晶質氧化銦鎵鋅(IGZO),這是由於其高載子遷移率(來自於銦)與低載子濃度(來自於鎵),而且還有良好之熱穩定性(結晶溫度~6000C)。
由於鋁與鎵同屬一族且較易取得,在本研究中欲以鋁取代鎵摻入氧化銦鋅(IZO),探討非晶質氧化銦鋅鋁(IAZO)中之非晶結構穩定性以及其相關特性,希望能在通道層之材料選擇中提供更大之選擇。
眼前的材料之能隙寬度是影響其電性行為之一重要參數,在此我們利用橢圓偏振技術分析非晶質氧化銦鋅鋁(IAZO, In:Al:Zn=2:<<1:1)之材料特性。在實驗中發現,氧化銦鋅鋁在室溫鍍製的結果為非晶狀態,而在退火溫度上升至約8500C時才會結晶。隨著退火溫度上升,非晶質氧化銦鋅鋁之載子濃度會由5.99×1018 cm-3先下降至2×1017 cm-3再上升至5.94×1018 cm-3,而載子遷移率會隨著溫度的上升而由2.48 cm2V-1s-1上升至14.9 cm2V-1s-1;再來,其材料之折射率會隨著退火溫度上升而有上升之現象,而且在退火結晶後,材料之能隙也會由3.122 eV上升至3.516 eV。
Thin film transistor(TFTs) is the most crucial active component in flat-panel displays. With the development of display industry, there are not only the demands for miniaturization of devices, but also toward the flexible and light transmission type devices. Within these, the characteristics of channel layer such as low concentration and high mobility of carriers, are important to the performance of overall devices. Furthermore, in order to deposit on flexible substrates, the process should under low temperature because the substrates could not afford the high temperature. Although materials like amorphous silicon and also organic materials have been intensively studied in the past decades, amorphous oxide semiconductors (AOSs) made with In-Zn composite oxide has recently caught a great attention. The later has the advantages including low process temperature, relatively higher carrier mobility, and good thermal stability (Tc~6000C).
In order to suppress the carrier density of the In-Zn composite oxide films, they are commonly doped with Ga. It is suspected that the role of Ga may be replaced with Al, which is obviously abundant and cheap compared to Ga. In this work, a detail electrical and optical characterization on the co-sputtered amorphous indium-aluminium-zinc oxide(IAZO) has been performed.
The bandgap of materials is one of the important parameters for affecting the electrical behavior of them. Here we utilized the spectroscopic ellipsometry to analyze the properties of IAZO(In:Al:Zn=2:<<1:1) in different annealing temperatures. In this study, we found that IAZOs were amorphous when be deposited under room temperature, and would be crystallized after the post-annealing about 8500C. During the increase of annealing temperature, the carrier concentration would first decrease from 5.99×1018 cm-3 to 2×1017 cm-3 and then increase to 5.94×1018 cm-3, and the carrier mobility would raise to 14.9 cm2V-1s-1 from 2.48 cm2V-1s-1. Furthermore, the index of refractive would increase during the increase of annealing temperature, and the bandgap of materials would increase from 3.122 eV to 3.516 eV when they were crystallized.
誌謝 I
摘要 II
Abstract III
目錄 IV
表索引 VI
圖索引 VII
Chapter 1 緒論 1
Chapter 2 文獻回顧 3
2.1透明導電層 3
2.1.1 氧化銦錫(ITO) 3
2.1.2 氧化鋅(ZnO) 4
2.2透明通道層 6
2.2.1 有機材料 7
2.2.2 無機材料 8
Chapter 3 實驗方法與流程 35
3.1試片準備 35
3.2 試片鍍製 35
3.2.1氧化鋅鎵 35
3.2.2氧化銦鋅鋁 35
3.3試片量測 36
3.3.1橢圓儀光學分析 36
3.3.2 X-ray繞射分析 36
3.3.3膜厚量測 37
3.3.4霍爾量測與分析 37
3.3.5穿透率與反射率之量測與分析 37
3.3.6光激發光(Photoluminescence,PL)之量測與分析 38
3.3.7歐傑電子能譜儀(AES)之量測與分析 38
Chapter 4 光學量測與分析 43
4.1 光學常數簡介[4.1] 43
4.2 Fresnel Equations[4.2] 44
4.3 量測原理 [4.1] 46
4.4 膜層光學分析 48
4.5 回歸分析及擬合方法 [4.1] 50
4.6 膜層方程式 51
4.6.1 Cauchy layer[4.1] 51
4.6.2 Kramers-Kronig Relation (KKR) [4.1] 51
4.7材料能隙 51
4.7.1結晶材料之直接能隙[4.3, 4.4] 51
4.7.3非晶質材料之能隙[2.5] 55
Chapter 5 結果與討論 60
5.1 橢圓儀量測錯誤與修正流程 60
5.2 材料特性分析系統建立-氧化鋁鎵(GZO) 61
5.3 氧化銦鋅鋁(IAZO) 63
Chapter6 結論與未來展望 92
6.1結論 92
6.2未來展望 93
Chapter 7 參考文獻 94
2.1 B. Radha Krishna, T.K. Subramanyam, B. Srinivasulu Naidu, S. Uthanna, Optical Materials 15 (2000) 217-224
2.2 S. Naseen, M. Iqbal, K. Hussain, Solar Energy Mater. Solar Cells 31 (1993) 155.
2.3 S. Kasiviswanathan, G. Rangarajan, J. Appl. Phys. 75 (1994) 2572.
2.4 P. Nath, R.F. Bunshah, Thin Solid Films 69 (1980) 63.
2.5 S. Kaleemulla, A. Sivasankar Reddyc, S. Uthannab, P. Sreedhara Reddy, Journal of Alloys and Compounds xxx (2009) xxx–xxx
2.6 F.O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama, J. Appl. Phys. 88 (2000) 4175–4180.
2.7 F.O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, M. Motoyama, K. Murai, Jpn. J. Appl. Phys. 39 (2000) L377–L379.
2.8 E. Terzini, P. Thilakan, C. Minarini, Mater. Sci. Eng. B 77 (2000) 110–114.
2.9 E. Kaminska, A. Piotrowsak, J. Kossut, R. Butkute, W. Dobrowolski, R. Lukasiewicz, A. Barcz, R. Jakiela, E. Dynowska, E. Przezdziecka, M. Aleszkiewicz, P. Wojnar and E. Kowalczyk, Phys. Stat. Sol. (c) 2[3] (2005) 1119
2.10 E. Kaminska, A. Piotrowsak, J. Kossut, A. Barcz, R. Butkute, W. Dobrowolski, E. Dynowska, R. Jakiela, E. Przezdziecka, R. Lukasiewicz, M. Aleszkiewicz, P. Wojnar and E. Kowalczyk, Solid State Commun. 135 (2005) 11
2.11 T. Minami, H. Nanto, and S. Takata, Appl. Phys. Lett. 41(10), 15 November 1982
2.12 T. Minami, H. Nanto. S. Shooji and S. Takata, Thin Solid Films 111 (1984)
2.13 Agura H, Suzuki A, Matsushita T, Aoki T and Okuda M, Thin Solid Films (2003) 445 263
2.14 Tadatsugu Minami, Semicond. Sci. Technol. 20 (2005) S35–S44
2.15 Tanaka H, Ihara K, Miyata T, Sato H and Minami T 2004J. Vac. Sci. Technol. A 22 1757
2.16 Tetsuya Yamamoto and Hiroshi Katayama-Yoshida, Jpn. J. Appl. Phys. Vol. 38 (1999) pp. L166-L169
2.17 Sang Eun Park, Jung Chul Lee and Pung Keun Song, Journal of the Korean Physical Society, Vol. 54, No. 3, (2009), pp. 1283-1287
2.18 S.-M. Park, T. Ikegami, K. Ebihara, Thin Solid Films 513 (2006) 90–94.
2.19 Lilienfeld JE. Method and apparatus for controlling electric currents, US Patent 1,745,175 (1930).
2.20 Weimer PK. Proc IRE (1962) 1462.
2.21 A. Tsumura, H. Koezuka, T. Ando, Appl. Phys. Lett. 1986, 49, 1210
2.22 Kelley, T. W.; Muyres, D. V.; Baude, P. F.; Smith, T. P.; Jones, T. D. Mater. Res. Soc. Symp. Proc. 2003, 771, 169.
2.23 Ando, S.; Murakami, R.; Nishida, J.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. J. Am. Chem. Soc. 2005, 127, 14996.
2.24 Park, S. J.; Kuo, C. C.; Anthony, J. E.; Jackson, T. N. Tech. Dig. - Int. Electron DeVices Meet. 2006, 113.
2.25 Babel, A.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13656.
2.26 Spear WE, LeComber PG. Solid State Commun 1975;17:1193.
2.27 Spear WE, LeComber PG. Philos Mag 1976;33:935.
2.28 LeComber PG, Spear WE, Gaith A. Electron Lett 1979;15:179.
2.29 N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, Clarendon, 1979.
2.30 E.P. Denton, H. Rawson, J.E. Stanworth, Nature 173 (1954)1030.
2.31 A. Vomvas and M. Roilos, Philos. Mag. B49 (1984) 143.
2.32 J. Robertson, J. Phys. C12 (1979) 4767.
2.33 Hideo Hosono, Masahiro Yasukawa, Hiroshi Kawazoe, Journal of Non-Crystalline SoLids 203 (1996) 334-344
2.34 Kenji Nomura et al., Nature, vol. 432, 488(2004)
2.35 Burag Yaglioglu, Yen-Jung Huang, Hyo-Young Yeom, David C. Paine, Thin Solid Films 496 (2006) 89 – 94
2.36 Pung Keun SONG, Hirotaka AKAO, Masayuki KAMEI, Yuzo SHIGESATO and Itaru YASUI, Jpn. J. Appl. Phys. Vol. 38 (1999) pp. 5224-5226
2.37 Kenji NOMURA, Akihiro TAKAGI, Toshio KAMIYA, Hiromichi OHTA, Masahiro HIRANO and Hideo HOSONO, Jpn J. Appl. Phys. Vol. 45, No. 5B, 2006, pp. 4303–4308
2.38 B. Yaglioglu, H. Y. Yeom, and D. C. Paine, Appl. Phys. Lett. 86, 261908, 2005.
2.39 Gabriel Bernardo, Goncalo Goncalvesb, Pedro Barquinha, Quirina Ferreira,Graca Brotas, Luis Pereira, Ana Charas, Jorge Morgado, Rodrigo Martins, Elvira Fortunato, Synthetic Metals 159 (2009) 1112–1115
2.40 Wantae Lim, SeonHoo Kim, Yu-Lin Wang, J. W. Lee, D. P. Norton, S. J. Pearton, F. Ren, and I. I. Kravchenko, Journal of The Electrochemical Society, 155 _6_ H383-H385 _2008_
2.41 Hideo Hosono, Kenji Nomura, Youichi Ogo, Tomoya Uruga, Toshio Kamiya, Journal of Non-Crystalline Solids 354 (2008) 2796–2800
2.42 L.-S. Hsu, C. S. Yeh, C. C. Kuo, B. R. Huang, S. Dhar, Journal of Optoelectronics and Advanced Materials Vol. 7, No. 6, December 2005, p. 3039 – 3046
2.43 Jun-Liang Zhao, Xiao-Min Li, Ji-Ming Bian, Wei-Dong Yu, Xiang-Dong Gao, Journal of Crystal Growth 276 (2005) 507–512
2.44 Özgür Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J. et al., Journal of Applied Physics 98 041301(2005).
2.45 R.L. Weiher and R.P. Ley, J. Appl. Phys. 37(1966) 299
2.46 J.C.C. Fan and J.B. Goodenough, J.Appl. Phys. 48[8](1997)3524
2.47 M. Orita, H. Ohta, M. Hirano, H. Hosono, Appl. Phys. Lett. 77 (2000) 4166.
2.48 M. Rebien, M. Hong, J.P. Mannaerts, M. Fleischer, Appl. Phys. Lett. 81 (2002) 250.
3.1 Dieter K. Schroder, “Semiconductor Material and Device Characterization” 3rd(2006)
3.2 Wikipedia, Auger Electron Spectroscopy
4.1 J.A. Woolam Co., Inc. Guide to using WVASE32
4.2 Frank L. Pedrotti, S.J., Leno S.Pedrotti, Introduction to Optics
4.3 J. I. Pankove, Optical processes in semiconductors. New York: Dover Publications, (1971).
4.4 P. Y. Yu and M. Cardona, “Fundamentals of Semiconductors”. Berlin: Springer, (1996).
4.5 S.R. Elliott, “Physics of Amorphous Materials”, Longman, London, (1982)
4.6 E.C. Freeman, W. Paul, Phys. Rev. B 20 (1979) 716
5.1 E.D. Palik, “Handbook of Optical Constants” (1998)
5.2 Sang Eun Park, Jung Chul Lee, Pung Keun Son, Jin-Ho Lee, Journal of the Korean Physical Society, Vol. 54, No. 3, March 2009, pp. 1283_1287
5.3 Pung Keun SONG, Hirotaka AKAO, Masayuki KAMEI, Yuzo SHIGESATO and Itaru YASUI, Jpn. J. Appl. Phys. Vol. 38 (1999) pp. 5224-5226
5.4 Kenji NOMURA, Akihiro TAKAGI, Toshio KAMIYA, Hiromichi OHTA, Masahiro HIRANO and Hideo HOSONO, Jpn J. Appl. Phys. Vol. 45, No. 5B, 2006, pp. 4303–4308
5.5 B. Yaglioglu, H. Y. Yeom, and D. C. Paine, Appl. Phys. Lett. 86, 261908, 2005.
5.6 Gabriel Bernardo, Goncalo Goncalvesb, Pedro Barquinha, Quirina Ferreira, Graca Brotas, Luis Pereira, Ana Charas, Jorge Morgado, Rodrigo Martins, Elvira Fortunato, Synthetic Metals 159 (2009) 1112–1115
5.7 Kenji Nomura, Hiromichi Ohta, Akihiro Takagi, Toshio Kamiya, Masahiro Hirano & Hideo Hosono, Nature 432 (2004)488
5.8 G. Gonçalves, P. Barquinha, L. Raniero, R. Martins, E. Fortunato, Thin Solid Films 516 (2008) 1374–1376
5.9 L.-S. Hsu, C. S. Yeh, C. C. Kuo, B. R. Huang, S. Dhar, Journal of Optoelectronics and Advanced Materials Vol. 7, No. 6, December 2005, p. 3039 – 3046
5.10 Jun-Liang Zhao, Xiao-Min Li, Ji-Ming Bian, Wei-Dong Yu, Xiang-Dong Gao, Journal of Crystal Growth 276 (2005) 507–512
5.11 Özgür Ü., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Doğan, S., Avrutin, V., Cho, S.-J. et al., Journal of Applied Physics 98 041301(2005).
5.12 R.L. Weiher and R.P. Ley, J. Appl. Phys. 37(1966) 299
5.13 J.C.C. Fan and J.B. Goodenough, J.Appl. Phys. 48[8](1997)3524
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *