帳號:guest(18.221.161.79)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周泓濤
作者(外文):Chou, Hung-Tao
論文名稱(中文):以近紅外光雷射照射接合抗體之多壁奈米碳管對癌症細胞生存率的影響
論文名稱(外文):Effects to cell viability by conjugating multi-walled carbon nanotubes and antibody on cancer cells under near infrared laser radiation
指導教授(中文):戴念華
李紫原
張晃猷
指導教授(外文):Tai, Nyan-Hwa
Lee, Chi-Young
Chang, Hwan-You
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9731575
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:101
中文關鍵詞:多壁奈米碳管乳癌細胞抗體HER2光照近紅外光
相關次數:
  • 推薦推薦:0
  • 點閱點閱:32
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
為了提升奈米碳管在熱治療上的效率及未來實際應用的可能性,本研究嘗試將多壁奈米碳管與抗體相結合,並以近紅外光照射加熱,觀察細胞的生存狀況。以本實驗室自產的多壁奈米碳管,經表面改質處理,成功的與anti-HER2 antibody相結合。在進行後續實驗前以螢光免疫染色法進行確認。
照光實驗以Alamar Blue細胞生存率測試作定量統計。結果顯示,帶有抗體的多壁奈米碳管無論是在殺死乳癌細胞的能力或細胞的選擇性,都優於官能基化碳管。此外添加碳管濃度的不同、照光時間差異或是照光結束後於不同時間點下進行統計,都會影響到此實驗結果。
以EtBr螢光染劑對照光完的細胞進行染色,其結果與定量統計實驗結果相呼應。亦藉著EtBr染色機制,確認了細胞膜在照光實驗結束後,有損毀的情形,這導致了細胞的死亡。
本研究進一步以共軛聚焦顯微鏡證明,帶有抗體的碳管與乳癌細胞相接觸後能藉由胞吞作用進入細胞。一方面可解釋此實驗組具有較高殺死癌細胞的效果,也證明了本研究殺死癌細胞的機制可能存在內部蛋白質結構破壞的原因。
第1章 緒論1
1-1 奈米碳管的簡介 1
1-1-1 奈米碳管的起源與結構 1
1-1-2 奈米碳管的製備 3
1-2 細胞的簡介 5
1-2-1 細胞的定義與分類 5
1-2-2 細胞的組成與結構 6
1-2-3 細胞的生長需求 7
1-2-4 人類表皮生長因子受體2蛋白質(Human epidermal growth factor receptor 2 protein, HER2) 7
1-2-5 單株抗體 8
1-2-6 免疫化學染色法(IHC) 8
1-3 奈米碳管與生物科學領域 9
1-3-1 奈米碳管在生醫工程上的應用 9
1-3-2 奈米碳管對細胞的影響與生物的影響 11
1-3-3 奈米碳管結合光照在生醫領域上的應用 13
1-4 研究動機 14
第2章 帶有抗體的多壁奈米碳管溶液製備 29
2-1 多壁奈米碳管(MWCNTs)的製備 29
2-1-1 多壁奈米碳管粉末的製備 29
2-1-2 官能基化(Functionalization)多壁奈米碳管之製備 30
2-2 原始與官能基化多壁奈米碳管形貌與性質分析 31
2-3 帶有抗體的多壁奈米碳管溶液之製備 32
2-4 以二抗帶螢光(anti-rat IgG-dylight 488)染劑確認奈米碳管與anti-HER2 antibody結合情形 35
2-5 帶螢光、抗體的多壁奈米碳管與細胞接觸的情形 36
第3章 以奈米碳管作吸收近紅外光媒介對癌症細胞造成的影響 43
3-1 官能基化多壁奈米碳管溶液以808 nm近紅外光照射後升溫現象 43
3-2 帶抗體的多壁奈米碳管以近紅外線照射後對於乳癌細胞影響的定量統計 44
3-2-1染色時間點在奈米碳管照射紅外線殺死乳癌細胞實驗對細胞的影響 44
3-2-2 抗體銜接、碳管濃度在奈米碳管照射紅外線殺死乳癌細胞實驗中的影響 47
3-2-3 不同照光時間對殺死癌細胞能力的影響 48
3-2-4 以第二種癌細胞-大腸癌細胞HCT-8進行奈米碳管照光實驗 48
3-3 以EtBr螢光染劑對奈米碳管光照實驗的結果作分析比較 49
第4章 結果與討論 54
4-1 原始與官能基化多壁奈米碳管形貌與性質分析結果 54
4-1-1 場發掃描式電子顯微鏡觀察材料之結果 54
4-1-2 拉曼光譜儀之分析結果 54
4-1-3傅利葉轉換紅外線光譜儀觀察多壁奈米碳管官能基前後之差異 56
4-2 以anti-rat IgG-dylight 488確認奈米碳管與anti-HER2 antibody結合結果 57
4-3 帶螢光及抗體的多壁奈米碳管與細胞接觸時的現象 59
4-4 官能基化多壁奈米碳管水溶液以808 nm近紅外光光源照射後升溫現象結果 60
4-5 帶抗體的多壁奈米碳管以近紅外線照射後對於乳癌細胞的影響 60
4-5-1 染色時間點對於定量結果的影響之結果 60
4-5-2 抗體銜接與碳管濃度的效應 61
4-5-3 不同照光時間對癌細胞生存力的影響 63
4-5-4 HCT-8大腸癌細胞進行奈米碳管照光實驗 64
4-6以螢光染劑對奈米光照實驗的結果作分析比較之結果 65
第5章 結論 94
參考文獻 97
參考文獻
[1]H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, and R.E. Smalley, “C60 : Buckminsterfullerence”, Nature, 318, 162 (1985).
[2]S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991).
[3]S. Iijima, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, 603 (1993).
[4]Rice University: The Smalley Group, http:// smalley.rice.edu/, Image Gallery, 1.
[5]J. Hone, M. Whitney, C. Piscoti, and A. Zettl, “Thermal conductivity of single walled carbon nanotubes”, Phys. Rev. B, 59, 2514 (1999).
[6]Z. Yao, C. L. Kane, and C. Dekker, “High-Field Electrical Transport in Single Wall Carbon Nanotubes”, Phys. Rev. Lett. 84, 2941 (2000).
[7]M. R. Falvo, and G. J. Clary, “Bending and bucking of carbon nanotubes under large strain”, Nature, 389, 582 (1997).
[8]B.Q.Wei, R.Vajtai, and P.M.Ajayan, “Reliability and current carrying capacity of carbon nanotubes”, Appl. Phys. Lett. 79, 1172 (2001).
[9]Peter J. F. Harris, “Carbon nanotubes and related structures : new materials for the twenty-first century”, Department of Chemisty, University of Reading(1995).
[10]Mildred S. Dresseelhaus, Gene Dresseelhaus, and Riichiro Saito, ‘‘Physics of carbon nanotubes’’, Carbon, 33, 883 (1995).
[11]Y. Saito, S. Uemura, “Field emission from carbon nanotubes and its application to electron sources”, Carbon, 38, 169 (2000).
[12]T. Guo, P. Nikolev, A. Thess, “Catalytic growth of single-walled nanotubes by laser vaporization”, Chem. Phys. Lett., 243, 49 (1995).
[13]Pavel Nikolaev, Bronikowski MJ, Bradley RK, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide”, Chemical Physical Letters 313, 91 (1999).
[14]H. M. Cheng et al., “Large-scale and low-cost synthesis of single walled carbon nanotubes”, Appl. Phys. Lett., 72, 3282 (1998).
[15]M. Meyyappan, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, and M. S. Dresselhaus, “Carbon nanotube growth by PECVD: a review”, Plasma Sources Sci. Technol. 12, 205 (2003).
[16]“Rapid review – Microbiology and Immunology”, Ken S. Rosenthal, and James S. Tan, Elsevier (Singapore) Pte Ltd., 譯者:羅瑋瑜, 合記圖書出版社 (2008).
[17]The Walter and Eliza Hall Institute of Medical Research, “Update on HER-2 as a target for cancer therapy Intracellular signaling pathways of ErbB2/HER-2 and family members”, Breast Cancer Research 3, 385-389 (2001).
[18]呂思潔, “基礎免疫學”, 文光圖書有限公司 (2007).
[19]張紅, “新藥發現開發技術平台”, 高等教育出版社 (2007).
[20]G. KÖHLER, C. MILSTEIN, “Continuous cultures of fused cells secreting antibody of predefined specificity”, Nature 256, 495-497 (1975).
[21]林榮培,楊揚輝, “獸醫實驗室檢查法手冊”, 台灣省家畜衛生試驗所 (1977).
[22]Alexander Star, Jean-Christophe P. Gabriel, Keith Bradley, and George Gruner, “Electronic detection of specific protein binding using nanotube FET devices”, Nano Letters, 3, 459-463 (2003).
[23]Ming Zheng, Anand Jagota, Ellen D. Semke, Bruce A. Diner, Robert S. Mclean, Steve R. Lustig, Raymond E. Richardson, and Nancy G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes”, Nature Materials, 2, 338 – 342 (2003).
[24]Xiaogang Han, Yulin. Li, and Zhaoxiang Deng, “DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays”, Advanced. Materials, 19, 1518 – 1522 (2007).
[25]Yianbiao Zhang, Mandakini Kanungo, Alexander J. Ho, Paul Freimuth, Daniel van der Lelie, Michelle Chen, Samuel M. Khamis, Sujit S. Datta, A. T. Charlie Johnson, James A. Misewich, and Stanislaus S. Wong, “Functionalized carbon nanotubes for detecting viral proteins”, Nano Letters, 7, 3086 – 3091 (2007).
[26]Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L, “Carbon Nanotube Substrates Boost Neuronal Electrical Signaling”, Nano Letters, 5, 1107-1110 (2005).
[27]Tamir Gabay, Eyal Jakobs, Eshel Ben-Jacob, and Yael Hanein, “Engineered self-organization of neural networks using carbon nanotube clusters”, Physica A, 350, 611 – 621 (2005).
[28]Anna A. Shvedova, Vincent Castranova, Elena R. Kisin, Diane Schwegler-Berry, Ashley R. Murray, Vadim Z. Gandelsman, Andrew Maynard, and Paul Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells”, Journal of Toxicology and Environmental Health, Part A, 66:1909 (2003).
[29]Arnaud Magrez, Sandor Kasas, Vale´rie Salicio, Nathalie Pasquier, Jin Won Seo, Marco Celio, Stefan Catsicas, Beat Schwaller, and La´szlo´ Forro´, “Cellular Toxicity of Carbon Based Nanomaterials”, Nano Letters, 6, 1121-1125 (2006).
[30]Nancy A. Monteiro-Riviere, Robert J. Nemanich, Alfred O. Inman, Yunyu Y. Wang, and Jim E. Riviere, “Multi-walled carbon nanotube interactions with human epidermal keratinocytes”, Toxicology Letters, 155, 377 (2005).
[31]Arnaud Magrez, Sandor Kasas, Vale´rie Salicio, Nathalie Pasquier, Jin Won Seo, Marco Celio, Stefan Catsica, Beat Schwaller, and La´szlo Forro, “Multi-walled carbon nanotubes induce T lymphocyte apoptosis”, Toxicology Letter121-126 (2006).
[32]Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB, “Cytotoxicity of Carbon Nanomaterials: Single-Wall Nanotube, Multi-Wall
Nanotube, and Fullerene”, Environ. Sci. Technol, 39, 1378 (2005).
[33]Amanda M. Schrand, Liming Dai, John J. Schlager, Saber M. Hussain, Eiji Osawa, “Differential biocompatibility of carbon nanotubes and nanodiamonds”, Diamond and Related Materials, 2118-2123 (2007).
[34]Chiu Wing Lam, John T. James, Richard McCluskey, and Robert L. Hunter, “Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days After Intratracheal Instillation”, Toxicological Science, 126–134 (2004).
[35]Karin Pulskamp, J.M. W¨orle-Knirsch, H.F. Krug, “Carbon nanotubes and their influence on cell viability and function”, Toxicology Letters, 172S (2007).
[36]Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A, “Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells”, Nano Letters, 6, 1522-1528 (2006).
[37]De Nicola M, Gattia DM, Bellucci S, De Bellis G, Micciulla F, Pastore R, Tiberia A, Cerella C, D'Alessio M, Antisari MV, Marazzi R, Traversa E, Magrini A, Bergamaschi A, Ghibelli L, “Effect of different carbon nanotubes on cell viability and proliferation”, J. Phys. Condens. Matter, 19 (2007).
[38]Laura P. Zanello, Bin Zhao, Hui Hu, and Robert C. Haddon, “Bone Cell Proliferation on Carbon Nanotubes”, Nano Letter, 562-567 (2006).
[39]Jie Meng, Li Song, Jie Meng, Hua Kong, Guangjin Zhu, Chaoying Wang, Lianghua Xu, Sishen Xie, Haiyan Xu, “Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro”, Journal of Biomedical Materials Research, 79A, 298-306 (2006).
[40]Jin-Woo Kim, Evgeny V. Shashkov, Ekaterina I. Galanzha, Nalinikanth Kotagiri, and Vladimir P. Zharov, “Photothermal Antimicrobial Nanotherapy and Nanodiagnostics With Self-Assembling Carbon Nanotube Clusters”, Lasers in Surgery and Medicine, 39, 622-634 (2007).
[41]Vasiliki Zorbas, Alfonso Ortiz-Acevedo, Alan B. Dalton, Mario Miki Yoshida, Gregg R. Dieckmann, Rockford K. Draper, Ray H. Baughman, Miguel Jose-Yacaman, and Inga H. Musselman, “Preparation and Characterization of Individual Peptide-Wrapped Single-Walled Carbon Nanotubes”, J. AM. CHEM. SOC, 7222-7227 (2004).
[42]Zhuang Liu, Alice C. Fan, Kavya Rakhra, Sarah Sherlock, Andrew Goodwin, Xiaoyuan Chen, Qiwei Yang, Dean W. Felsher, and Hongjie Dai, “Supramolecular Stacking of Doxorubicin on Carbon Nanotubes for In Vivo Cancer Therapy”, Angew. Chem, 7668 –7672 (2009).
[43]Nikfarjam M, Muralidharan V, Christophi C, “Mechanisms of focal heat destruction of liver tumors”, J Surg Res, 127, 208–223 (2005).
[44]Ning Shao, Shaoxin Lu, EricWickstrom, and Balaji Panchapakesan, “Integrated molecular targeting of IGF1Rand HER2 surface receptors and destruction of breast cancer cells using single wall carbon nanotubes”, Nanotechnology (2007).
[45]Hye Kyung Moon, Sang Ho Lee, and Hee Cheul Choi, “In Vivo Near Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes”, ACS Nano, 3707-3713 (2009).
[46]Sheng-Tao Yang, XiangWang, Guang Jia, Yiqun Gu, TianchengWang, Haiyu Nie, Cuicui Ge, HaifangWang, Yuanfang Liu, “Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice”, Toxicology Letters,182–189 (2008).
[47]Jinping Cheng, Chung Man Chan, L. Monica Veca, Wing Lin Poon, Po Kwok Chan, Liangwei Qu, Ya-Ping Sun, Shuk Han Cheng, “Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes into zebrafish (Danio rerio)”, Toxicology and Applied Pharmacology,216–225(2009).
[48]Andrew Burke, Xuanfeng Ding, Ravi Singh, Robert A. Kraft, Nicole Levi-Polyachenko, Marissa Nichole Rylander, Chris Szot, Cara Buchanan, Jon Whitney, Jessica Fisher, Heather C. Hatcher, Ralph D’Agostino, Jr, Nancy D. Kock, P. M. Ajayan, David L. Carroll, Steven Akman, Frank M. Torti, and Suzy V. Torti, “Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation”, Applied physical science (2005).
[49]Nadine Wong Shi Kam, Michael O’Connell, Jeffrey A. Wisdom, and Hongjie Dai, “Carbon nanotubes as multifunctional biological transporters and near infrared agents for selective cancer cell destruction”, PNAS, Vol.102, no. 33, 11600 – 11605 (2005).
[50]曾士豪, “單壁奈米碳管量產及其光聲響性質之研究”, 國立清華大學材料科學工程學系碩士論文(2005).
[51]Kannan Balasubramanian, and Marko Burghard, “Chemically functionalized carbon nanotubes”, Small1 (2005).
[52]Radu Marches, Pavitra Chakravarty, Inga H. Musselman, Pooja Bajaj, Robert N. Azad, Paul Pantano, Rockford K. Draper, and Ellen S. Vitetta, “Specific thermal ablation of tumor cells using single-walled carbon nanotubes targeted by covalently-coupled monoclonal antibodies”, Int. J. Cancer, 2970–2977 (2009).
[53]Chung-HaoWang, Yao-Jhang Huang, Chia-Wei Chang, Wen-Ming Hsu and Ching An Peng, “In vitro photothermal destruction of neuroblastoma cells using carbon nanotubes conjugated with GD2 monoclonal antibody”, Nanotechnology 20 (2009).
[54]Yan Xiao, Xiugong Gao, Oleh Taratula, Stephen Treado, Aaron Urbas, R David Holbrook, Richard E Cavicchi1, C Thomas Avedisian, Somenath Mitra, Ronak Savla, Paul D Wagner, Sudhir Srivastava and Huixin He, “Anti-HER2 IgY antibody-functionalized single-walled carbon nanotubes for detection and selective destruction of breast cancer cells”, BMC Cancer (2009).
[55]陳陵援、吳慧眼, “儀器分析”, 三民書局 (2004).
[56]John Robertson, “Diamond-like amorphous carbon”, Materials Science and Engineering Review, 37, 129 – 281 (2002).
[57]Jean-Christophe Charlier, Peter C. Eklund, Jun Zhu, and Andrea C. Ferrar, “Electron and phonon Properties of graphene: their relationship with carbon nanotubes”, Topics Applied Physics, 11, 673 – 709 (2008).
[58]Mark A. Hamon, Jian Chen, Hui Hu, Yongsheng Chen, Misha E. Itkis, Apparao M. Rao, Peter C. Eklund, and Robert C. Haddon, “Dissolution of single-walled carbon nanotubes”, Advanced Materials, 11, 834 – 840 (1999).
[59]Douglas B. Mawhinney, Viktor Naumenko, Anya Kuznetsova, and John T. Yates, “Infrared spectral evidence for the etching of carbon nanotubes: Ozone oxidation at 298 K”, Journal of American Chemical Society, 122, 2383 – 2384 (2000).
[60]D.R. Shobha Jeykumari, S. Ramaprabhu, S. Sriman Narayanan, “A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide”, Carbon, 1340-1353 ( 2007).
[61] Kuang-Kai Liu, Chi-Ching Wang, Chia-Liang Cheng, Jui-I Chao, “Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells”, Biomaterials, 30, 4249–4259 (2009).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *