帳號:guest(3.131.36.247)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉晉宏
作者(外文):Liu, Chin-Hung
論文名稱(中文):大面積規則陣列銅銦鎵硒奈米結構太陽能電池
論文名稱(外文):Large Area CIGS Nanotips Array Solar Cells
指導教授(中文):闕郁倫
指導教授(外文):Chueh, Yu-Lun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9731701
出版年(民國):100
畢業學年度:99
語文別:英文
論文頁數:37
中文關鍵詞:銅銦鎵硒奈米結構
外文關鍵詞:CIGSNanotips
相關次數:
  • 推薦推薦:0
  • 點閱點閱:42
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Large area CIGS nanotips array (CIGS NTs) are directly demonstrated by using one step ion milling with deice size over 10 cm2. By controlling the ion milling time and Ar+ incident angles, the length of CIGS NTs can be precisely controlled from 120 nm to 320 nm and the orientation can be adjusted from vertical to tilting angle of 15⁰ with density of nanotips over 4.5 × 1013/cm2. Transmission electron microcopy (TEM) results indicate that these nanotips are of single-crystal structure. The optical properties of the large area CIGS nanotips array (CIGS NTs) were measured by UV-NIR spectrometer, indicating that the reflectance of CIGS NTs is < 1 % at incident wavelengths from 300 nm to 1200 nm. Formation mechanism of these CIGS NTs had been discussed in terms of inhomogeneous concentration variation, crystal quality, and sputtering theories. Both light/dark I-V behavior and external quantum efficiency of these CIGS large area CIGS nanotips array (CIGS NTs) were measured. The results implied that with nanostructure the performance of CIGS NTs might be enhanced.
摘要
本研究採用CIGS四元靶材進行物理性濺鍍製備銅銦鎵硒薄膜,再使用離子蝕刻技術直接於銅銦鎵硒薄膜(CIGS thin film)表面製備大面積規則銅銦鎵硒奈米尖錐陣列(CIGS NTs)以增加接觸面面積進而提高光電轉換效率。藉由調整蝕刻時間可以控制銅銦鎵硒奈米尖錐陣列的長度從120 nm到320 nm,另外,控制氬離子入射角進面控制銅銦鎵硒奈米尖錐陣列的夾角從最大90 度(垂直)到15度。所製備之銅銦鎵硒奈米尖錐陣列之密度更可大於4.5 × 1013/cm2。藉由穿透式電子顯微鏡(TEM)的分析可得知此銅銦鎵硒奈米尖錐陣列為單晶結構。由反射光譜可知,銅銦鎵硒奈米尖錐陣列對於紫外光到近紅外光波段的光具有全反射性質,亦即反射率全小於1%。藉由探討銅銦鎵硒奈米尖錐陣列相對於各種製程條件的成長狀況,釐清離子式蝕刻製備奈米結構形成原因。更進一步藉由量測銅銦鎵硒奈米尖錐陣列之亮/暗電流-電壓和外部量子效應之表現以了解此奈米結構之光電轉換效率。
Contents
Abstract I
摘要 II
Acknowledge III
List of figures VI
List of table VIII
List of Acronyms and Abbreviations IX
Chapter 1. Introduction 1
Chapter 2. Experimental procedures 7
Section 1. Fabrication of CIGS solar cells 7
Section 2. Fabrication nanostructures onto CIGS thin films 8
Section 3. Microstructure analysis 8
Section 4. Measurement of solar cell efficiency 9
Section 5. Instrument list 9
Chapter 3. Results and discussion 17
Chapter 4 Conclusions 35
Reference 36
Nation Renewable Energy Laboratory, NREL.
黃惠良等,太陽能電池,五南出版社,第 11 章,449 頁,2009。
Jenny Nelson, The physics of solar cells, Imperial Colleage Press, p. 214, 2003.
Repins, I. et al. Short Communication: Accelerated Publication 19.9%-efficient
ZnO/CdS/CuInGaSe2 solar cell with 81•2% fill factor. Progress in Photovoltaics:
Research and Applications 16, 235-239 (2008).
ZSW, Centre for Solar Energy and Hydrogen Research, (2010).
Ramanathan, K. et al. in Photovoltaic Specialists Conference, Conference
Record of the Twenty-Sixth IEEE. 319-322, (1997).
Hariskos, D., Spiering, S. & Powalla, M. Buffer layers in Cu(In,Ga)Se2 solar cells and
modules. Thin Solid Films 480-481, 99-109, (2005).
Jin Chuangui, X. X., Jia Chong, Liu Weifeng, Cai Weili, Yao Lianzeng, Li Xiaoguang.
Electrochemical Fabrication of Large-Area, Ordered Bi2Te3 Nanowire Arrays. The
Journal of Physical Chemistry B 108, 1844-1847, (2004).
Brendan M. Kayes, M. A. F., Morgan C. Putnam, Michael D. Kelzenberg, Nathan S.
Lewis, Harry A. Atwater. Growth of vertically aligned Si wire arrays over large areas
(>1 cm2 ) with Au and Cu catalysts. Applied Physics Letters 91, 103110
(2007).
Facsko, S. et al. Formation of Ordered Nanoscale Semiconductor Dots by Ion
Sputtering. Science 285, 1551-1553, (1999).
Brendan M. Kayes, N. S. L., Harry A. Atwater. Comparison of the device physics
principles of planar and radial p-n junction nanorod solar cells. Journal Of
Applied Physics 97, 114302 (2005).
Kelzenberg, M. D. et al. Enhanced absorption and carrier collection in Si wire arrays
for photovoltaic applications. Nature Materials 9, 239-244, (2010).
Seah, M. P., Clifford, C. A., Green, F. M. & Gilmore, I. S. An accurate semi-empirical
equation for sputtering yields I: for argon ions. Surface and Interface Analysis 37,
444-458, (2005).
http://www.npl.co.uk/nanoscience/surface-nanoanalysis/products-and-services/sputter-yield-
values
Huang, Y.-F. et al. Improved broadband and quasi-omnidirectional anti-reflection
properties with biomimetic silicon nanostructures. Nature Nanotechnology 2, 770-774, (2007).
Sun, C.-H., Jiang, P. & Jiang, B. Broadband moth-eye antireflection coatings on
silicon. Applied Physics Letters 92, 061112-061113, (2008).
Earle B. Brown, Modern optics, Huntington, N.Y. : R. E. Krieger Pub. Co., (1974).
Ogawa, Y., Jäger-Waldau, A., Hua, T. H., Hashimoto, Y. & Ito, K. Influence of KCN
treatment on CuInS2 thin films. Applied Surface Science 92, 232-236, (1996).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *