帳號:guest(3.15.174.76)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王佩雯
作者(外文):Wang, Pei-Wen
論文名稱(中文):奈米碳管在綠豆的運輸途徑及其對綠豆生長之影響
論文名稱(外文):Investigations on the translocation of CNTs in mung beans and the influences of CNTs on the growth of mung beans
指導教授(中文):戴念華
李紫原
指導教授(外文):Tai, Nyan-Hwa
Lee, Cyz-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學號:9731704
出版年(民國):100
畢業學年度:99
語文別:中文
論文頁數:107
中文關鍵詞:少壁奈米碳管綠豆運輸途徑帶螢光少壁奈米碳管非侵入式3D影像分子系統
相關次數:
  • 推薦推薦:0
  • 點閱點閱:48
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,奈米碳管被廣泛應用在各個領域。其存在的潛在危險是奈米碳管可能在製造、使用或廢棄的過程中,逸散到生活環境當中,危害生物體。為了探究此可能性,諸多學者開始探討奈米碳管對各種植物生長的影響及可能的機制。然而,卻鮮少有研究學者討論植物攝取奈米碳管的可能性以及奈米碳管進入的運輸途徑等相關之課題。故本研究首先觀察奈米碳管對綠豆生長過程所造成的影響,並嘗試對奈米碳管進入植物中的運輸途徑進行一探討,最後進一步思考思考奈米碳管影響植物生長的可能機制
本實驗,分別以光學顯微鏡、環境掃描式電子顯微鏡、場發射掃描式電子顯微鏡觀察比較有無奈米碳管共同培養的植物形貌之差異,並由數據統計發現奈米碳管具有明顯促進綠豆芽伸長的能力,尤其在根部的長度最為明顯,比控制組平均增長了10-13 mm,而莖部則是平均增長5-8 mm。但是,與少壁奈米碳管溶液共同培養的綠豆細胞形貌有破損的現象產生。本研究進一步運用熱差分析儀偵測不同培養條件的綠豆芽蘊含水含量多寡,結果顯示,奈米碳管可能促進綠豆水分的吸收。另一方面,本研究亦使用了拉曼光譜儀以及場發射掃描電子顯微鏡探討與證實奈米碳管是否確實被攝取進入植物體內。
最後,本研究利用非侵入式3D活體影像系統追蹤已接上螢光的奈米碳管進入植物及在植物體內運輸的途徑,並利用共軛聚焦顯微鏡進行更細部的微觀分析與觀測,結果顯示帶螢光的少壁奈米碳管主要存在於細胞壁之間。由此推論,其可能的運輸途徑為經由質體外運輸進入綠豆植株。
第1章 緒論..............................................1
1-1 奈米碳管的簡介......................................1
1-1-1奈米碳管的起源與結構...............................1
1-1-2 奈米碳管的製備....................................3
1-2 植物的簡介..........................................5
1-2-1 植物的演化和分類..................................5
1-2-2 植物的構造........................................7
1-2-3 植物的運輸作用....................................8
1-3奈米碳管與生物科學領域...............................9
1-3-1 奈米碳管在生醫工程的應用..........................9
1-3-2 奈米碳管對細胞的影響.............................10
1-3-3奈米碳管對植物的影響..............................12
1-4 研究動機...........................................14
第2章 帶螢光的少壁奈米碳管溶液製備.....................30
2-1官能基化(Functionalized)少壁奈米碳管之製備..........30
2-2 原始、官能基化少壁奈米碳管之形貌與性質分析.........31
2-3 帶螢光少壁奈米碳管溶液(Dy-LWCNTs medium)之製備.....32
2-4 利用螢光顯微鏡觀察帶螢光少壁奈米碳管之結合情形.....34
第3章 分析與少壁奈米碳管共同培養的綠豆植株之實驗方法...40
3-1 綠豆種子(Mung Bean)的滅菌與植株的培養............40
3-2 分析與少壁奈米碳管共同培養的綠豆植株之生長統計與形貌觀察的實驗方法...........................................41
3-3 利用熱重分析儀測量綠豆植株中水分含量多寡之實驗方法.45
3-4 利用拉曼光譜儀偵測綠豆植株中少壁奈米碳管之實驗方法.45
3-5 利用非侵入式3D活體影像分子系統(In Vivo Image System)追蹤帶螢光少壁奈米碳管之實驗方法...........................41
3-6 利用共軛聚焦顯微鏡(Confocal Microscopy)追蹤帶螢光少壁奈米碳管之實驗方法.......................................47
第4章 結果與討論.......................................53
4-1 原始與官能基化少壁奈米碳管形貌與性質分析結果.......53
4-1-1 傅利葉轉換紅外線光譜儀觀察少壁奈米碳管之結果.....53
4-1-2 拉曼光譜儀觀察少壁奈米碳管之結果.................54
4-1-3 場發掃描式電子顯微鏡及穿透式電子顯微鏡觀察少壁奈米碳管之結果.................................................55
4-1-4 高解析電子能譜儀觀察少壁奈米碳管之結果...........56
4-1-5 熱重分析儀觀察少壁奈米碳管之結果.................57
4-2 帶螢光的少壁奈米碳管形貌與性質分析結果.............58
4-3 少壁奈米碳管對綠豆生長之影響.......................59
4-4 少壁奈米碳管對綠豆芽含水量的影響...................61
4-5 少壁奈米碳管在綠豆植株中存在位置的探討.............63
4-6 少壁奈米碳管在綠豆的運輸途徑之探討.................65
第5章 結論.............................................99
參考文獻..............................................102
[1] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, and R.E. Smalley, “C60 : buckminsterfullerence”, Nature, 318, 162 (1985).
[2] S. Iijima et al., “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991).
[3] S. Iijima, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, 603 (1993).
[4] R.H. Baughman, A.A. Zakhidov, and W.A De Heer, “Carbon nanotubes - The route toward applications”, Science, 297, 5582 (2002).
[5] J. Cao, Q. Wang, M. Rolandi, and H. Dai, Aharonov–Bohm, “Interference and beating in single-walled carbon-nanotube interferometers”, Phys Rev Lett, 93, 21 (2004).
[6] Mildred S. Dresseelhaus, Gene Dresseelhaus, and Riichiro Saito, ‘‘Physics of carbon nanotubes’’, Carbon, 33, 883 (1995).
[7] C. N. R. Rao, B. C. Satishkumar, A. Govindaraj, M. Nath, “Science and technology of nanomaterials: current status and future prospects”, Chemphyschem 2, 78 (2001).
[8] Peter J. F. Harris, “Carbon nanotubes and related structures : new materials for the twenty-first century”, Department of Chemisty, University of Reading (1995).
[9] Mildred S. Dresseelhaus, Gene Dresseelhaus, and Riichiro Saito, “Physics of carbon nanotubes”, Carbon, 33, 883 (1995).
[10] N. Hamada, S. Sawada, A. Oshiyama, “New one-dimensional conductors: Graphitic microtubules”, Phys. Rev. Lett. 68, 1579 (1992).
[11] M. D. Dresselhaus, G. Dresselhaus, R. Saito, M. D. Dresselhaus, G. Dresselhaus, R. Saito, “Thermal conduction of carbon nanotubes using molecular dynamics”, Carbon, 33, 12 (1995).
[12] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, “Electronic structure of atomically resolved carbon nanotubes”, Nature, 391, 59 (1998).
[13] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, “Atomic structure and electronic properties of single-walled carbon nanotubes”, Nature, 391, 62 (1998).
[14] Y. Saito, S. Uemura, “Field emission from carbon nanotubes and its application to electron sources”, Carbon, 38, 169 (2000).
[15] T. W. Ebbesen, H. Hiura, J. Fujita, Y. Ochiai, S. Matsui, K.Tanigaki, “Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor”, Chem. Phys. Lett, 209, 83 (1993).
[16] T. W. Ebbesen, P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature, 358, 220 (1992).
[17] T. Guo, P. Nikolev, A. Thess, “Catalytic growth of single-walled nanotubes by laser vaporization”, Chem. Phys. Lett., 243, 49 (1995).
[18] Pavel Nikolaev, Bronikowski MJ, Bradley RK, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide”, Chemical Physical Letters, 313, 91 (1999).
[19] H. M. Cheng et al., “Large-scale and low-cost synthesis of single walled carbon nanotubes”, Appl. Phys. Lett., 72, 3282 (1998).
[20] M. Meyyappan, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun, and M. S. Dresselhaus, “Carbon nanotube growth by PECVD: a review”, Plasma Sources Sci. Technol., 12, 205 (2003).
[21] Peter H. Raven, Ray F. Evert, and Susan E. Eichhorn, “Biology of Plants”, 4th ed. Worth Publishers, Inc., New York (1986).
[22] Harold C. Bold, Constantine J. Alexopoulos, and Theodore Delevoryas, “Morphology of Plants and Fungi”, 5th ed, Harpercollins College, New York (1987).
[23] Ernest M. Gifford and Adriance S. Foster, “Morphology and Evolution of Vascular Plants”, 3rd ed., W. H. Freeman, New York (1989).
[24] Purves et al., “Life: The Science of Biology”, 4th ed., William K. Purves Hardcover, England (1996).
[25] G. Ray Noggle and George J. Fritz, “Introductory Plant Physiology”, 2nd ed., Prentice Hall, New Jersey (1983).
[26] Raven, Peter H., Ray F. Evert, and Susan E. Eichhorn, “Biology of Plants”, 7th ed., Hardcover, W.H. Freeman & Company, O.U. Schmidt (2005)
[27] Robbins, W.W., Weier, T.E., et al., “Botany:Plant Science”, 3rd ed., Wiley International, New York (1965).
[28] Raven, Peter H., Evert, Ray F., and Eichhorn, Susan E., “Biology of Plants” ,7th ed., W.H.Freeman Co Ltd, United States (2005).
[29] Alexander Star, Jean-Christophe P. Gabriel, Keith Bradley, and George Gruner, “Electronic detection of specific protein binding using nanotube FET devices”, Nano Letters, 3, 459-463 (2003).
[30] Ming Zheng, Anand Jagota, Ellen D. Semke, Bruce A. Diner, Robert S. Mclean, Steve R. Lustig, Raymond E. Richardson, and Nancy G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes”, Nature Materials, 2, 338 – 342 (2003).
[31] Xiaogang Han, Yulin. Li, and Zhaoxiang Deng, “DNA-wrapped single-walled carbon nanotubes as rigid templates for assembling linear gold nanoparticle arrays”, Advanced. Materials, 19, 1518 – 1522 (2007).
[32] Yianbiao Zhang, Mandakini Kanungo, Alexander J. Ho, Paul Freimuth, Daniel van der Lelie, Michelle Chen, Samuel M. Khamis, Sujit S. Datta, A. T. Charlie Johnson, James A. Misewich, and Stanislaus S. Wong, “Functionalized carbon nanotubes for detecting viral proteins”, Nano Letters, 7, 3086 – 3091 (2007).
[33] Lovat V, Pantarotto D, Lagostena L, Cacciari B, Grandolfo M, Righi M, Spalluto G, Prato M, Ballerini L, “Carbon Nanotube Substrates Boost Neuronal Electrical Signaling”, Nano Letters, 5, 1107-1110 (2005).
[34] Tamir Gabay, Eyal Jakobs, Eshel Ben-Jacob, and Yael Hanein, “Engineered self-organization of neural networks using carbon nanotube clusters”, Physica A, 350, 611 – 621 (2005).
[35] Anna A. Shvedova, Vincent Castranova, Elena R. Kisin, Diane Schwegler-Berry, Ashley R. Murray, Vadim Z. Gandelsman, Andrew Maynard, and Paul Baron, “Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells”, Journal of Toxicology and Environmental Health, Part A, 66:1909 (2003).
[36] Arnaud Magrez, Sandor Kasas, Vale´rie Salicio, Nathalie Pasquier, Jin Won Seo, Marco Celio, Stefan Catsicas, Beat Schwaller, and La´szlo´ Forro´, “Cellular Toxicity of Carbon Based Nanomaterials”, Nano Letters, 6, 1121-1125 (2006).
[37] Nancy A. Monteiro-Riviere, Robert J. Nemanich, Alfred O. Inman, Yunyu Y. Wang, and Jim E. Riviere, “Multi-walled carbon nanotube interactions with human epidermal keratinocytes”, Toxicology Letters, 155, 377 (2005).
[38] Arnaud Magrez, Sandor Kasas, Vale´rie Salicio, Nathalie Pasquier, Jin Won Seo, Marco Celio, Stefan Catsica, Beat Schwaller, and La´szlo Forro, “Multi-walled carbon nanotubes induce T lymphocyte apoptosis”, Toxicology Letter, 121-126 (2006).
[39] Jia G, Wang HF, Yan L, Wang X, Pei RJ, Yan T, Zhao YL, Guo XB, “Cytotoxicity of Carbon Nanomaterials: Single-Wall Nanotube, Multi-Wall
Nanotube, and Fullerene”, Environ. Sci. Technol, 39, 1378 (2005).
[40] Amanda M. Schrand, Liming Dai, John J. Schlager, Saber M. Hussain, Eiji Osawa, “Differential biocompatibility of carbon nanotubes and nanodiamonds”, Diamond and Related Materials, 2118-2123 (2007).
[41] Chiu Wing Lam, John T. James, Richard McCluskey, and Robert L. Hunter, “Pulmonary Toxicity of Single-Wall Carbon Nanotubes in Mice 7 and 90 Days After Intratracheal Instillation”, Toxicological Science, 126–134 (2004).
[42] Karin Pulskamp, J.M. W¨orle-Knirsch, H.F. Krug, “Carbon nanotubes and their influence on cell viability and function”, Toxicology Letters, 172S (2007).
[43] Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A, “Functionalized Carbon Nanotubes Are Non-Cytotoxic and Preserve the Functionality of Primary Immune Cells”, Nano Letters, 6, 1522-1528 (2006).
[44] De Nicola M, Gattia DM, Bellucci S, De Bellis G, Micciulla F, Pastore R, Tiberia A, Cerella C, D'Alessio M, Antisari MV, Marazzi R, Traversa E, Magrini A, Bergamaschi A, Ghibelli L, “Effect of different carbon nanotubes on cell viability and proliferation”, J. Phys. Condens. Matter, 2, 19 (2007).
[45] Laura P. Zanello, Bin Zhao, Hui Hu, and Robert C. Haddon, “Bone Cell Proliferation on Carbon Nanotubes”, Nano Letter, 562-567 (2006).
[46] Jie Meng, Li Song, Jie Meng, Hua Kong, Guangjin Zhu, Chaoying Wang, Lianghua Xu, Sishen Xie, Haiyan Xu, “Using single-walled carbon nanotubes nonwoven films as scaffolds to enhance long-term cell proliferation in vitro”, Journal of Biomedical Materials Research, 79A, 298-306 (2006).
[47] Joe E. K., Wei X., Anderson R. R., Lin C. P., “Selective Cell Targeting with Light-Absorbing Microparticles and Nanoparticles.”, Biophys. J., 84, 4023–4032 (2003).
[48] Zharov V. P., Galitovskaya E. N., Jonson C., Kelly T., “Synergistic Enhancement of Selective Nanophotothermolysis with Gold Nanoclusters: Potential for Cancer Therapy.”, Laser Surg. Med., 37, 219–226 (2005).
[49] Xia T., Kovochich M., Brant J., Hotze M., Sempf J., Oberley T., Sioutas C., Yeh J. I., Wiesner M. R., Nel A. E., “Comparison of the Abilities of Ambient, and Manufactured Nanoparticles to Induce Cellular Toxicity According to an Oxidative Stress Paradigm.”, Nano Lett., 6, 1794–1807 (2006).
[50] Liu Z., Davis C., Cai W., He L., Chen X., Dai H., “Circulation and Long-Term Fate of Functionalized, Biocompatible Single-Walled Carbon Nanotubes in Mice Probed by Raman Spectroscopy.”, Proc. Natl. Acad. Sci. U.S.A., 105, 1410–1415 (2008).
[51] Geiser M., Rothen-Rutishauser B., Kapp N., Schurch S., Kreyling W., Schulz H., Semmler M., Im Hof V., Heyder J., Gehr P., “Ultrafine Particles Cross Cellular Membranes by Nonphagocytic Mechanisms in Lungs and in Cultured Cells.”, Environ. Health Perspect, 113, 1555–1560 (2005).
[52] Torney F., Trewyn B., Lin V. S. Y., Wang K., “Mesoporous Silica Nanoparticles Deliver DNA and Chemicals into Plants.”, Nat. Nanotechnol., 2, 295–300 (2007).
[53] Liu Q., Chen B., Wang Q., Shi X., Xiao Z., Lin J., Fang X., “Carbon Nanotubes as Molecular Transporters for Walled Plant Cells.”, Nano Lett., 9, 1007–1010 (2009).
[54] Gonzales-Melendi P., Fernandez-Pacheco R., Coronado M. J., Corredor E., Testillano P. S., Risueno M. C., Marquina C., Ibarra M. P., Rubiales D., Perez-De-Luque A., “Nanoparticles as Smart Treatment-Delivery Systems in Plants: Assessment of Different Techniques of Microscopy for Their Visualization in Plant Tissues.”, Ann. Bot., 101, 187–195 (2008).
[55] Mariya Khodakovskaya, Enkeleda Dervishi, Meena Mahmood, Yang Xu, Zhongrui Li, Fumiya Watanabe, and Alexandru S. Biris., “Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth.”, ACS Nano, 10, 1021 (2009).
[56] Daohui Lin, Baoshan Xing., “Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth”, Environmental Pollution, 150, 243-250 (2007).
[57] Canas J. E., Long M., Nations S., Vadan R., Dai L., Luo M., et al., “Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species.”, Environ Toxicol Chem, 27, 1922–31 (2008).
[58] Xingmao Ma, Jane Geiser-Lee, Yang Deng, Andrei Kolmakov., “Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation.”, Science of the total environment, 408, 3053–3061 (2010).
[59] Dimitrios Stampoulis, Saion K. Sinha, and Jason C. White, “Assay-Dependent Phytotoxicity of nanoparticles to plants.”, Environ. Sci. Technol, 43, 9473–9479 (2009).
[60] Remya Nair, Saino Hanna Varghese, Baiju G. Nair, T. Maekawa, Y. Yoshida, D. Sakthi Kumar., “Nanoparticulate material delivery to plants.”, Plant Science, 179, 154–163 (2010).
[61] Qiaoling Liu, Yuanyuan Zhao, Yinglang Wan, Junpeng Zheng, Xuejie Zhang, Chunru Wang, Xiaohong Fang, and Jinxing Lin., “Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level.”, ACS nano, 10, 5743–5748 (2010).
[62] Biswas, P., Wu, C.Y., “Critical review: nanoparticles and the environment.”, J. Air Waste Manag. Assoc, 55, 708-746 (2005).
[63] Dunn T, Morse BB, Pendleton PC., “Nanotechnology: The big picture”, The newsletter of the MIT enterprise forum of cambridge, 22, 8 (2004).
[64] Valentin N. Popov., “Carbon nanotubes: properties and application.”, Materials Science and Engineering, 43, 61–102 (2004).
[65] Melissa Paradise, Tarun Goswami., “Carbon nanotubes production and industrial applications.”, Materials and design, 28, 1477–1489 (2007).
[66] Grabarek, Z. and Gergely, J., “Zero-length crosslinking procedure with the use of active esters.”, Anal Biochem, 185, 131 (1990).
[67] Staros, J.V., et al., “Enhancement by N-hydroxysulfosuccinimide of water-soluble carbodiimide-mediated coupling reactions.”, Anal Biochem, 156, 220 (1986).
[68] Timkovich, R., “Detection of the stable addition of carbodiimide to proteins.”, Anal Biochem, 79, 135 (1977).
[69] Mark A. Hamon, Jian Chen, Hui Hu, Yongsheng Chen, Misha E. Itkis, Apparao M. Rao, Peter C. Eklund, and Robert C. Haddon, “Dissolution of single-walled carbon nanotubes”, Advanced Materials, 11, 834 – 840 (1999).
[70] Douglas B. Mawhinney, Viktor Naumenko, Anya Kuznetsova, and John T. Yates, “Infrared spectral evidence for the etching of carbon nanotubes: Ozone oxidation at 298 K”, Journal of American Chemical Society, 122, 2383 – 2384 (2000).
[71] Gardiner, D.J., “Practical Raman spectroscopy” 1st ed., Springer-Verlag, Berlin (1989).
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *