帳號:guest(3.142.197.198)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):袁宇呈
作者(外文):Yuan, Yu-Cheng
論文名稱(中文):液晶型聚亞醯胺與無機粒子混摻於傳統聚亞醯胺之熱傳導性質研究
論文名稱(外文):Thermal Conductivity of Inorganic Fillers and Liquid Crystal Polyimide Blending with Commercial Polyimide Composites
指導教授(中文):李育德
指導教授(外文):Lee, Yu-Der
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9732502
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:84
中文關鍵詞:聚亞醯胺熱傳導
相關次數:
  • 推薦推薦:0
  • 點閱點閱:575
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
提升熱傳導能力,為現今材料發展的重要課題。提升導熱能力可以改善部份電子元件於使用上所遭遇之問題,如訊號延遲、電腦受熱當機等。本研究結合有機與無機的方法對軟性電子基板材料聚亞醯胺做改質,希望藉此提升熱傳導能力。在有機方面,摻入液晶型聚亞醯胺增加排列規則性;在無機方面,導入導熱性佳的陶瓷粒子氮化硼,藉由這兩方面有效提升導熱能力。
當複合物之基材使用30 wt%液晶聚亞醯胺且摻入40 wt%表面改質之氮化硼時,將這兩個可改善導熱能力之條件加入,其熱傳導係數從0.3 W/mK提升至0. 83W/mK;介電常數從4.1降至2.875、散逸係數從0.018降至0.0059,彈性模數則從3576 MPa提升至5622 MPa,對於軟性電子所需要之性質要求皆有提升。而由研究結果得知,在定量氮化硼添加下,如果基材導入液晶型聚亞醯胺,其熱傳導係數有再次提升之效果。
摘要 I
總目錄 II
圖目錄 VI
表目錄 X
第一章 緒論 1
第二章 文獻回顧 2
2-1 軟性印刷電路板 2
2-1-1 絕緣基材 聚亞醯胺簡介 2
2-1-2 聚亞醯胺之製備 4
2-2 熱傳導機制 8
2-2-1 高分子結構上改良 9
2-2-2 導入熱傳性質良好的散熱粒子 12
2-3 液晶高分子 18
2-4 氮化硼簡介 21
第三章 研究動機 23
第四章 實驗部分 24
4-1 實驗藥品 24
4-2 實驗儀器 25
4-3 基本性質測試原理及製備 27
4-4 實驗流程 30
4-5實驗步驟 31
4-5-1 液晶型聚醯胺酸之前驅物的合成 31
4-5-1-1 單體BNCB的合成 31
4-5-1-2 單體BACB的合成 32
4-5-1-3 液晶型聚醯胺酸的合成 33
4-5-2 非結晶性聚醯胺酸之合成 34
4-5-3 液晶型聚亞醯胺分子複合物之製備 34
4-5-4 氮化硼與非結晶性聚亞醯胺之複合薄膜之製備 35
4-5-4-1 氮化硼之表面改質 35
4-5-4-2 氮化硼與非結晶性聚亞醯胺複合薄膜製備 36
4-5-5 氮化硼與液晶性聚亞醯胺之分子複合薄膜之製備 36
第五章 結果與討論 37
5-1 液晶型聚亞醯胺結構鑑定 37
5-1-1 BNCB單體分析鑑定 37
5-1-2 BACB單體分析鑑定 39
5-1-3 液晶型聚亞醯胺結構鑑定 40
5-2 液晶型聚亞醯胺液晶相分析 43
5-2-1 液晶型聚亞醯胺之DSC 熱分析 43
5-2-2 液晶型聚亞醯胺之POM分析 44
5-2-3 液晶型聚亞醯胺之WAXD分析 45
5-3 液晶型聚亞醯胺亞醯胺化分析 46
5-4 液晶型聚亞醯胺摻合之性質探討 49
5-4-1 液晶型聚亞醯胺摻合之液晶性質分析 49
5-4-1-1 DSC分析 49
5-4-1-2 POM分析 51
5-4-1-3 WAXD分析 53
5-4-2 液晶型聚亞醯胺摻合之熱傳導性質分析 54
5-4-3 液晶型聚亞醯胺摻合之電氣性質分析 55
5-4-4 液晶型聚亞醯胺摻合之機械強度分析 57
5-5 散熱粒子與聚亞醯胺摻和之性質探討 59
5-5-1 氮化硼表面改質之分析 59
5-5-2氮化硼與聚亞醯胺複合材料之SEM分析 61
5-5-3 氮化硼與聚亞醯胺複合材料之熱傳導性質分析 63
5-5-4 氮化硼與聚亞醯胺複合材料之電氣性質分析 64
5-5-5 氮化硼與聚亞醯胺複合材料之機械性質分析 66
5-5 液晶型聚亞醯胺與散熱粒子摻合之性值之比較 68
5-5-1 液晶型聚亞醯胺與散熱粒子摻合之液晶性質分析 68
5-5-1-1液晶型聚亞醯胺與散熱粒子摻合之POM分析 68
5-5-1-2液晶型聚亞醯胺與散熱粒子摻合之WAXD分析 70
5-5-2 液晶型聚亞醯胺與散熱粒子摻合之熱傳導性質分析 71
5-5-2-1 複合材料之熱傳導公式介紹 71
5-5-2-2 散熱粒子摻入液晶型聚亞醯胺與非結晶性聚亞醯胺之熱傳導性質比較 73
5-5-3 液晶型聚亞醯胺與散熱粒子摻合之電氣性質分析 76
5-5-4 液晶型聚亞醯胺與散熱粒子摻合之機械性質分析 78
第六章 結論 80
第七章 參考文獻 82
江選雅, “聚亞醯胺的合成及其在 LCD 上的應用”, 化工資訊, 7,43(1999)

金進興, “聚亞醯胺在 IC 元件上之應用”, 工業材料, 114, 118(1996)

丁孟賢、何天白, “聚亞醯胺新型材料”

F.W. Harris, in Polyimide, D. Wilson, H.D. Stenzenberger, and P.M. Hergenrother, Editor, p.1, Chapman and Hall, New York(1990)

F. W. Harris, S.O. Norris, L.H. Lanier, B.A. Reinhardt, R.D. Case, S. Varaprath, S.M. Padaki, M. Torres, and W.A. Feld, in Polyimide: Synthesis, Characterization and Application, 1, K.L. Mittal, Editor, p.1, Plenum, New York(1984)

H. R. Lubowitz, “ Polyimide polymers”, U.S. patent No.3,528,950,(1970)

Y. Takemwa, M. Akatda, and C. Farren, High Thermal Conductive Epoxy Resins with Controlled High Order Structure , Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials,(2003)

C. L. Choy and K. Young, Thermal Conductivity of Semicrystalline Polymers-a Model , Polymer, 18, 769 (1977)

D. Hansen and G.A. Bernier, Thermal Conductivity of Polyethylene: The Effect of Crystal Size, Density and Orientation on the Thermal Conductivity, Polymer Engineer And Science , 12,204(1972)

C. L. Choy, S. P. Wong, and K. Young, Model Calculation of the Thermal Conductivity of Polymer Crystals, J. Polym. Sci. Polym. Phys. 23, 1495 (1985)

C. J. Lee, S. J. Oh, J. K. Song and S. J. Kim, Neural Signal Recording using Microelectrode Arrays Fabricated on Liquid Crystal Polymer Material, Materials Science and Engineering C ,24, 265 (2004)

K Geibel, A. Hammerschmidf and F. Strohmer, In Situ Photopolymerized, Oriented Liquid-Crystalline Diacrylates with High Thermal Conductivities, Adv. Mater. , 5, 107 (1993)

呂常興“有機無機性質比較調查報告” ,工業技術研究院, (2008)

D. H. P. Hasselman, Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance, J Comp Mater. , 21, 508 (1987)

L.C. Davis , Thermal Conductivity of Metal–Matrix Composites, J. Apply. Phys. , 10, 4954(1995)

G. W. Lee, M. Park, J. Y. Kim, J. I. LEE and H. G. Yoon, Enhanced Thermal Conductivity of Polymer Composites Filled with Hybrid Filler, Composites: Part A, 37 ,727(2006)

H. M. Tu and L. Ye, Thermal conductive PS/graphite composites, Polym. Adv. Technol, 20 ,21(2009)

Y. S. Xu, D.D.L Chung, C. Mroz, Thermally Conducting Aluminum Nitride Polymer-Matrix Composites, Composites: Part A¸ 32, 1749(2001)

謝承佑, 指導教授 鐘賢龍, ”A Preliminary Study on Application on AlN Ceramic Powder for Polymer Composites and Electronic Substrates”,國立成功大學博士論文(2006)

劉瑞祥, “液晶之基礎與應用”(1996)

周其鳳, 王新久, “液晶高分子”(1999)

李建輝, “熱向型液晶高分子的合成與應用”,材料與社會, 69, 67(1992)

張超群,“液晶高分子的應用現況及未來發展專題調查報告” , 工業技術研究院, 24(1996)

L. Maya, Boron Nitride Precursors-A Perspective, Appl. Organometallics Chem . 10, 175-182(1996)

P. J. Fazen, E. D. Remsen, J. S. Beck, Synthesis, Properties and Ceramic Conversion Reactions of Polyborazylene. A High-Yield
Polymeric Precursor to Boron Nitride, Chem. Mater,7.1942-1956(1995)

賴哲永,指導教授 翁明壽”氮化硼及其奈米結構之合成與機制之研究”東華大學碩士論文(2006)

S. L. Liu, T. S. Chung, H. Oikaw and A. Yamachghi, The Double Melting Behavior of Liquid Crystalline Polyimide Derived from PMDA and 1,3-bis[4-(4’-aminophenoxyl) cumyl] Benzene, J. Polym. Sci. Polym. Phys, 38,3018 (2000)

S. L. Liu, T. S. Chung, J. X. Geng, E. L. Zhou, and S. Tamai, Phase Transition and Transition Kinetics of a Thermotropic Poly(amide−imide) Derived from 70 Pyromellitic Dianhydride, 30 Terephthaloyl Chloride, and 1,3-Bis[4-(4‘-aminophenoxy)cumyl]benzene, Macromolecules,34,8710( 2001)

Helminiak, et al. “ Polyimide Molecular Weight”, U.S. Patent, No. 3,671,542( 1972)

Y. Xu and D. D. L. Chung, Increasing the Thermal Conductivity of Boron Nitride and Aluminum Nitride Particle Epoxy-Matrix Composites by Particle Surface Treatment, Composite Interface, 7, 243(2000)

Ingo Dierking, ”Texture of Liquid Crystals”Wiley- VCH GmbH and Co. KGaA(2003)

S. Yu, P. Hing and X. Hu, Thermal Conductivity of Polystyrene-Aluminum Nitride Composite, Composites Part A, 33,289(2002)

K. W. Garret, The Thermal Conductivity of Epoxy–Resin/Powder
Composite Materials. J Phys D ,7, 124(1974)

W. J. Jun and Y. X. Su, Effects of Interfacial Thermal Barrier Resistance and Particle Shape and Size on the Thermal Conductivity of AlN/PI Composites, Composites Science and Technology ,64, 1632(2004)
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *