帳號:guest(3.141.31.209)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳貞儀
作者(外文):Wu, Chen-Yi
論文名稱(中文):直接丙烷固態氧化物燃料電池之燃料重組研究
論文名稱(外文):Study on Fuel Reforming of Direct Propane Solid Oxide Fuel Cell
指導教授(中文):黃大仁
指導教授(外文):Huang, Ta-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9732521
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:92
中文關鍵詞:丙烷燃料重組
相關次數:
  • 推薦推薦:0
  • 點閱點閱:242
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
本研究以丙烷為燃料,觀察丙烷於陽極支撐SOFC之陽極支撐層燃料重組相關反應。首先,模擬於SOFC操作條件下丙烷於陽極觸媒層之燃料重組反應,即以50wt% NiO/YSZ觸媒還原後進行丙烷乾重組實驗,反應出口產物其CO/H2的比例皆有相同的趨勢,並利用出口產物比得到丙烷乾重組之總反應式。
接著,進行直接丙烷SOFC之電池實驗,本實驗使用Ni-YSZ為陽極支撐層材料的陽極支撐SOFC,利用陽極支撐層對丙烷行內部重組反應,其陽極為厚度約800μm、薄膜化電解質為厚度約7 μm之YSZ、陰極為厚度約30μm之LSM (Ni-YSZ / YSZ / LSM )。實驗結果發現,通入5% 丙烷 (5%C3H8+95%Ar) 與通入純氫為燃料之電池表現相差不遠。
直接丙烷SOFC實驗的反應初期,由於新鮮的YSZ提供充足的內部晶格氧,因此有許多水氣生成並伴隨著水氣去積碳機制,無積碳的累積;反應後期,由於YSZ內部晶格氧已被消耗,在氧物種缺乏的狀態下,積碳開始累積,電化學生成之水氣與鄰近碳物種快速反應產生二氧化碳,二氧化碳藉由濃度差擴散至陽極觸媒層進行燃料乾重組反應。
經由電池實驗出口產物比例與觸媒實驗之結果,比較可得:直接丙烷SOFC實驗,約有50%的燃料丙烷進行高溫裂解反應、30%的丙烷進行乾重組反應,剩下的20%丙烷直接裂解成積碳與氫氣,實際參與電化學反應,且由EDX表面分析結果可知在靠近電解質約80μm 處幾乎沒有積碳的累積,陽極的功能層並不受積碳的影響。
直接丙烷SOFC之去積碳機制共有三類:1. 靠近電解質的陽極支撐層可接受到氧離子,氧離子與積碳反應生成CO進而脫附,此為電化學去積碳機制;2. 電化學反應產生的水氣會快速與鄰近碳物種反應形成一氧化碳或是二氧化碳,此為水氣去積碳機制;3. 產生的二氧化碳擴散至陽極觸媒層與丙烷行乾重組反應,此為二氧化碳去積碳機制,此三種去積碳機制同時並行的結果,使直接丙烷SOFC可長時間穩定操作。
第一章 緒論 1
第二章 文獻回顧 5
2-1. 固態氧化物燃料電池 5
2-1-1. 工作原理 5
2-1-2. 電解質 6
2-1-3. 陰極 10
2-1-4. 陽極 13
2-2. 陽極觸媒層 15
2-2-1. 陽極觸媒層之用途 15
2-2-2. 以碳氫化合物為燃料之陽極支撐SOFC研究 19
2-3. 甲烷乾重組 22
2-3-1. 甲烷乾重組反應 22
2-3-2. 甲烷乾重組反應之反應機構 24
2-4. 丙烷燃料重組 29
2-4-1. 陽極支撐SOFC之丙烷燃料重組反應 29
2-4-2. 丙烷乾重組之反應機構 32
第三章 研究規劃 34
第四章 實驗方法與步驟 36
4-1. 實驗藥品 36
4-2. 實驗氣體 36
4-3. 製備方法 37
4-3-1. Ni/YSZ觸媒粉體製備 37
4-3-2. 陽極支撐SOFC製備 37
4-4. 實驗儀器 38
4-5. 反應器裝置 39
4-5-1. 觸媒測試裝置 39
4-5-2. 電池測試裝置 40
4-6. 實驗流程 41
4-6-1. 觸媒之丙烷乾重組 41
4-6-2. SOFC之電性測試與燃料重組 42
第五章 實驗結果與討論 44
5-1. 以Ni/YSZ為觸媒之丙烷乾重組實驗 44
5-1-1. 丙烷乾重組之實驗結果 44
5-1-2. 流速、積碳累積與轉化率之關係 49
5-1-3. 丙烷乾重組反應 50
5-2. 以丙烷為燃料之陽極支撐SOFC 52
5-2-1. 陽極支撐SOFC之電池組成 52
5-2-2. 陽極支撐SOFC之微觀圖 53
5-2-3. 還原時間對陽極支撐SOFC之影響 56
5-2-4. 陽極支撐SOFC之電性測試 58
5-2-5. 直接丙烷SOFC 59
5-2-6. 陽極支撐層之反應 63
5-2-7. 陽極支撐層反應後之EDX分析 65
5-3. 乾重組實驗與直接丙烷SOFC燃料重組之比較 68
5-3-1. 出口產物之比較 68
5-3-2. 積碳形成速率與反應時間之關係 74
5-3-3. 直接丙烷SOFC之總反應 76
第六章 結論 83
第七章 未來工作 87
第八章 參考文獻 88
1. 黃鎮江, “燃料電池”, 全華科技圖書股份有限公司, 2005年3月二版。
2. S. M. Haile, “Fuel cell materials and components”, Acta Materialia, 51 (2003) 5981-6000.
3. J. B. Goodenough, “Oxide-Ion Electrolytes”, Annual Review of Materials Research, 33 (2003) 91-128.
4. H. Inaba, H. Tagawa, “Review Ceria-based solid electrolytes”, Solid State Ionics, 83 (1996) 1-16.
5. K. Kordesch, G. Simader, “Fuel Cells and Their Applications”, Wiley-VCH, New York (1996).
6. Hammou, J. Guindet, “Solid Oxide Fuel Cell”, CRC Handbook of Solid State Electrochemistry (1997).
7. J. B. Goodenough, “Oxide-ion conductors by design”, Nature, 404 (2000) 821-823.
8. T. Ishihara, H. Matsuda, Y. Takita, “Doped LaGaO3 Perovskite type oxide as a new oxide ionic conductor”, Journal of the American Chemical Society, 116 (1994) 3801-3803.
9. S. M. Haile, “Materials for fuel cells,” Materials Today, 6 (2003) 24.
10. M. B. Ricoult, “SOFC - A playground for solid state chemistry,” Solid State Sciences, 10 (2008) 670-688.
11. N. Robertson, J.N. Michaels, “Oxygen exchange on platinum electrodes in zirconia cells: Location of electrochemical reaction sites”, Journal of the Electrochemical Society, 137 (1990) 129-135.
12. A. Weber, E. I. Tiffee, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, Journal of Power Sources, 127 (2004) 273-283.
13. Y. Lin, Z. Zhan, J. Liu, S. A. Barnett, ”Direct operation of solid oxide fuel cell with methane fuel”, Solid State Ionics, 176 (2005) 1827-1835.
14. M. E. S. Hegarty, A. M. O’Connor, ” Syngas production from natural gas using ZrO2-supported metals”, Catalysis Today, 42 (1998) 225.
15. J. Mizusaki, H. Tagawa, T. Saito, “Preparation of Nickel Pattern Electrodes on YSZ and Their Electrochemical Properties in H2-H2O Amtmospheres”, J. Electrochem. Soc., 141 (1994) 2129.
16. V. Modafferi, G. Panzera, “Propane reforming on Ni–Ru/GDC catalyst: H2 production for IT-SOFCs under SR and ATR conditions”, Applied Catalysis A: General, 334 (2008) 1-9.
17. P. Aguiar, N. L. Rey, “Improving catalyst structures and reactor con"gurations for autothermal reaction systems: application to solid oxide fuel cells,” Chemical Engineering Science, 56 (2001) 651-658.
18. E. S. Hecht, “Methane reforming kinetics within a Ni–YSZ SOFC anode support,” Applied Catalysis A: General, 295 (2005) 40-51.
19. T. Hibino, A. Hashimoto, T. Inoue, “A Low Operating Temperature Solid Oxide Fuel Cell in Hydrocarbon- Air Mixtures”, Science, 288 (2000) 2031.
20. Z. Zhan and S. A. Barnett, “An Octane-Fueled Solid Oxide Fuel Cell,” Science, 308 (2005) 844.
21. T. J. Huang, M. C. Huang, “FeCr gas diffusion layer with surface modification for fuel processing in direct-methane solid oxide fuel cells”, Journal of Power Sources, 185 (2008) 1315-1321.
22. Z. Zhan, J. Liu, “Operation of anode-supported solid oxide fuel cells on propane–air fuel mixtures,” Applied Catalysis A: General, 262 (2004) 255.
23. M. L. Faro, D. L. Rosa, “Electrochemical behaviour of propane- fed solid oxide fuel cells based on low Ni content anode catalysts,” Electrochimica Acta, 54 (2009) 5280.
24. Y. Cui, “Kinetic study of the catalytic reforming of CH4 with CO2 to syngas over Ni/a-Al2O3 catalyst: The effect of temperature on the reforming mechanism,” Applied Catalysis A: General, 318 (2007) 79-88.
25. V. C. H. Kroll, H. M. Swaan, “Methane Reforming Reaction with Carbon Dioxide over Ni/SiO2 Catalyst,” Journal of Catalysis, 164 (1997) 387-398.
26. K. Tomishige, “Development of ultra-stable Ni catalysts for CO2 reforming of methane,” Catalysis Today, 45 (1998) 35-39.
27. K. Asai, K. Takane, “Decomposition of methane in the presence of carbon dioxide over Ni catalysts,” Chemical Engineering Science, 63 (2008) 5083-5088.
28. E. Nikolla, “Comparative study of the kinetics of methane steam reforming on supported Ni and Sn-Ni alloy catalysts: The impact of the formation of Ni alloy on chemistry,” Journal of Catalysis, 263 (2009) 220-227.
29. M. B. Jensen, L. B. Raberg, “Mechanistic study of the dry reforming of propane to synthesis gas over a Ni/Mg(Al)O catalyst”, Catalysis Today, 145 (2009) 114-120.
30. N. Laosiripojana, “Catalytic steam reforming of ethane and propane over CeO2-doped Ni/Al2O3 at SOFC temperature: Improvement of resistance toward carbon formation by the redox property of doping CeO2”, Fuel, 85 (2006) 323-332.
31. N. Laosiripojana, S. Assabumrungrat, “Hydrogen production from steam and autothermal reforming of LPG over high surface area ceria”, Journal of Power Sources, 158 (2006) 1348-1357.
32. K. M. Hardiman, “Performance of a Co-Ni catalyst for propane reforming under low steam-to-carbon ratios”, Chemical Engineering Journal, 102 (2004) 119-130.
33. T. J. Huang, M. C. Huang, ”A new phenomenon of a fuel-free current during intermittent fuel flow over Ni-YSZ anode in direct methane SOFCs”, Journal of Power Sources, 168 (2007) 229-235.
34. 黃盟欽, “直接甲烷固態氧化物燃料電池之特性研究”, 清華大學化工所博士論文, 民國九十七年。
35. M. B. Jensen, L.B. Raberg, “Mechanistic study of the dry reforming of propane to synthesis gas over a Ni/Mg(Al)O catalyst,” Catalysis Today, 145 (2009) 114-120.
36. F. Zhao, A. V. Virkar, “Dependence of polarization in anode- supported solid oxide fuel cells on various cell parameters,” Journal of Power Sources, 141 (2005) 79-95.
37. Y. Matsumura, T. Nakamori, “Steam reforming of methane over nickel catalysts at low reaction temperature”, Appl. Catal. A: Gen., 258 (2004) 107.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *