帳號:guest(18.117.196.184)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林冠宏
作者(外文):Lin, Guan-Hong
論文名稱(中文):電子與電洞傳輸層應用於高分子太陽能電池之探討
論文名稱(外文):Studies on electron and hole transport layer in polymer solar cell
指導教授(中文):陳壽安
指導教授(外文):Chen, Show-An
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9732529
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:78
中文關鍵詞:高分子太陽電池電洞傳輸層電子傳輸層
外文關鍵詞:polymer solar cellhole transport layerelectron transport layer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:735
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近幾年來,由於人類對替代能源的重視,因此高分子太陽能電池的發展成為一個很重要的課題。對於高分子太陽能電池而言,其活性層 (active layer)內的形貌 (morphology)與串聯電阻皆會影響整個太陽能電池的效率。也因此,在本論文中,我們著重在此二個因素對以poly(3-hexylthiophene) (P3HT)混摻 [6,6]-phenyl-C61 butyric acid methyl ester (PCBM)為活性層之太陽能電池其效率的影響。
在本論文的第一個部分,我們分別利用熱退火 (Thermal annealing)與溶劑退火 (Solvent annealing)的方式來改變活性層之形貌。在最佳化的條件下,以熱退火方式製作的元件,效率可達 3.75 %,而對以溶劑退火方式製作的元件,最佳效率可達 4 %。
在本論文第二個部分,我們則利用本實驗室自行合成的水溶性聚苯胺sulfonic acid ring substituted polyaniline (SPAN),作為太陽能電池中的電洞傳輸層,其元件效率可達 3.75 %,與以PEDOT:PSS為電洞傳輸層之元件相近 (3.9 %)。此說明了 SPAN有機會可取代 PEDOT:PSS作為太陽能電池中電洞傳輸層的材料。
在本論文的最後一個部分,我們則首先利用水溶性冠醚取代基之聚茀系高分子Poly[9,9'-bis (6'-(((1,4,7,10,13,16)hexaoxacyclooctadecanyl)methoxy)hexyl)fluorene] (PF-18-crown-6) 當作電子傳輸層,以降低太陽能電池中的串聯電阻。相較未塗佈電子傳輸層之元件,加入此層能夠使元件效率從 2.45 %提升到 2.82 %,此意謂著 PF-18-crown-6可有效降低串聯電阻並提升元件效率。
In recent years, polymer solar cells have become an important issue, because of attention to alternative energy resources. For polymer solar cells, the morphology of active layer and the series resistance both play important roles in designing highly efficient solar cells.Therefore, the influence of these two factors on efficiency of polymer solar cells based on poly(3-hexylthiophene) (P3HT) blended with [6,6]-pheneyl-C61 butyric acid methyl ester (PCBM) as the active layer is investigated in this thesis.
In the first part of this thesis, we use thermal annealing and solvent annealing approach to change the active layer morphology. Under the optimal condition, the device efficiency of 3.75 % and 4 % are achieved for
thermal annealing and solvent annealing.
In the second part of this thesis, a water-soluble polyaniline, sulfonic acid ring substituted polyaniline (SPAN), which is synthesized in our laboratory, is adopted as a hole transport layer in the polymer solar cells.The device efficiency of 3.75 % is achieved which is similar to device with PEDOT:PSS as a hole transport layer (3.9 %), and indicates that SPAN has opportunity to substitute PEDOT:PSS as hole transport layer material in polymer solar cells.
In the last part of this thesis, we use water-soluble crown-ether-substituted polyfluorene, poly[9,9’-bis(6’-(((1,4,7,10,13,16)hexaoxacyclooctadecanyl) methoxy)hexyl)fluorene] (PF-18-crown-6) as the electron transport layer for the first time to reduce series resistance in the polymer solar cells. The device efficiency can be promoted from 2.45 % to 2.82 % after insertion of this layer, which indicates PF-18-crown-6 can reduce series resistance of polymer solar cells and enhance the device efficiency.
摘要………………………………………………………………………….…I
Abstract……………………………………………………………….………..II
目錄………………………………………………………………………...…IV
圖目錄……………………………………………………………………..…VII
表目錄………………………………………………………………………XIII
第一章、緒論
1-1 前言………………………………………………………………………..1
1-2 共軛導電高分子定義及其應用…………………………………………..2
1-3 共軛導電高分子的電子狀態理論………………………………………..4
1-4 高分子太陽能電池……………………………………………………....10
1-4-1 太陽能光譜………………………………………………...…….10
1-4-2高分子太陽能電池的原理……………………………………….12
1-4-3有機太陽能電池的參數……………………………...………..…14
第二章、文獻回顧
2-1 有機太陽能電池結構演進…………………………………………...….18
2-2 控制相分離以提升高分子太陽電池效率之方法………………………21
2-2-1 熱退火 (Thermal annealing)…………………………...…….….21
2-2-2 溶劑退火 (Solvent annealing)……………………...………...…25
2-2-3 混合溶劑 (Mixing solvent)……………………………...…..…..26
2-2-4 化學添加 (Chemical additives)………………………...…...…..27
2-3 電極界面修飾提升高分子太陽電池效率……………………..………..29
2-3-1 電洞傳輸層 (Hole transport layer)…………………...……...….30
2-3-2 電子傳輸層 (Electron transport layer)…………….……………33
2-3-3利用垂直相分離來提升元件效率…………………………….....38
2-4 串聯式結構 (Tandem cell)…………………………………………..…..40
2-5 文獻分析…………………………………………………………………41
第三章、研究方法及儀器原理
3-1 使用藥品…………………………………………………………………43
3-2 儀器設備…………………………………………………………………44
3-3 高分子太陽電池元件製作..………………………...……….…………..44
3-3-1 溶劑退火元件製程…………………………………...………….44
3-3-2 熱退火元件製程…………………………………...…...………..45
3-4 元件特性之量測…………………………………………………………45
第四章、高分子太陽電池之溶劑退火及熱退火製程最佳化
4-1 溶劑退火製程最佳化……………………………………………………46
4-1-1 P3HT摻混 PCBM比例之影響………………………………….46
4-1-2 活性層膜厚的選擇………………………………………………48
4-1-3 成膜速率對元件效率之影響……………………………………50
4-2 熱退火製程最佳化……………………………………………………..52
4-2-1 熱退火溫度及時間的影響………………………………………52
4-2-2 活性層膜厚及 P3HT:PCBM比例之最佳化………………….55
4-2-3 Pre-annealing 與Post-annealing對元件之影響…………………58
4-3 結論………………………………………………………………………59
第五章、水溶性自摻雜聚苯胺應用於高分子太陽電池之電洞傳輸層
5-1 以SPAN當作電洞傳輸層………………………………………………..61
5-2 SPAN膜厚效應……………………………………….……………...…63
5-3 SPAN去摻雜之影響………………….……………………………...…65
5-4 結論………………………………………………………………………67
第六章、水溶性冠醚取代基之聚茀系高分子應用於高分子太陽電池
電子傳輸層
6-1 以PF-18-crown-6當電子傳輸層對 Post-annealing與 Pre-annealing製程之影響………………………………………………………………………...68
6-2 摻雜 K2CO3於PF-18-crown-6當電子傳輸層之效應…………………70
6-3 結論…………………………………………………………………..…..72
第七章、 參考文獻…………………………………………………………..73
自傳………………………………………………………………………...…78
[1] C. J. Brabec, F. Padinger, J. C. Hummelen, R. A. J. Janssen and N. S. Sariciftci, Synth. Metals, 1999, 102, 861.
[2] S. E. Shaheen, R. Radspinner, N. Peyghambarian and G. E. Jabbour, Appl. Phys. Lett., 2001, 79, 2996.
[3] C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater., 2001, 11, 15.
[4] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, A. J. Heeger, Science, 2007, 317, 222.
[5] S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses1, M. Leclerc, K. Lee and A. J. Heeger, Nat. Photonics., 2009, 3, 297.
[6] H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu and G. Li, Nat. Photonics., 2009, 3, 649.
[7] Y. Liang, Z. Xu, J. Xia, S. T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater., 2010, 22, 1.
[8] C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge and J. M. J. Frechet, J. Am. Chem. Soc., 2010, 132, 7595.
[9] J. C. W. Chien, “Polyacetylene:Chemistry, Physics, and Material Science,” Academic Press, Orlando (1984).
[10] A. S. Wood, “Tapping the power of intrinsic conductivity”, Modern Plastics Int., Aug. (1991) 33.
[11] M. Pope, H. Kallmann and P. Magnante, J. Chem. Phys., 1963, 38, 2042.
[12] C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett., 1987, 51, 914.
[13] A. Moliton and J.-M. Nunzi, Polym. Int., 2006, 55, 583.
[14] M. Knupfer, Appl. Phys. A, 2003, 77, 623.
[15] T. J. Savenije, J. M. Warman and A. Goossens, Chem. Phys. Lett., 1998, 287, 148.
[16] J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti and A. B. Holmes, Appl. Phys. Lett., 1996, 68, 3120.
[17] M. Theander, A. Yartsev, D. Zigmantas, V. Sundstrom, W. Mammo, M. R. Andersson and O. Ingänas, Phy. Rev. B, 2000, 61, 12957.
[18] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudi, Science, 1992, 258, 1474.
[19] P. Peumans and S. R. Forrest, Appl. Phys. Lett., 2001, 79, 126.
[20] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci and P. Denk, Appl. Phys. Lett., 2002, 80, 1288.
[21] H. Hoppe and N. S. Sariciftci, Adv. Polym. Sci., 2008, 214,1.
[22] H. Hoppe and N. S. Sariciftci, J. Mater. Chem., 2006, 16, 45
[23] X. Yang and J. Loos, Macromolecules, 2007, 40, 1353

[24] G. Li, V. Shrotriya, Y. Yao, and Y. Yang, J. Appl. Phys., 2005, 98, 043704
[25] D. Chirvase, J. Parisi, J. CHummelen and V. Dyakonov, Nonotechnology, 2004, 15, 1317
[26] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, T. Fromherz, M. T. Rispens, L. Sanchez, and J. C. Hummelen, Adv. Funct. Mater., 2001, 11, 374.
[27] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys., 2003, 94, 6849.
[28] K. M. Coakley and M. D. McGehee, Chem. Mater., 2004, 16, 4533.
[29] C. W. Tang, Appl. Phys. Lett., 1986, 48, 183.
[30] N. S. Sariciftci, D. Braun, and C. Zhang, V. I. Srdanov, A. J. Heeger, G. Stucky, and F. Wudl, Appt. Phys. Lett., 1993, 62, 585.
[31] G. Yu, J. Gao, J. C. Hummelen, F. Wudi, A. J. Heeger, Science, 1995, 270,1789.
[32] W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater., 2005, 15, 1617.
[33] P. Schilinsky, U. Asawapirom, U. Scherf, M. Biele, and C. J. Brabec, Chem. Mater., 2005, 17, 2175.
[34] W. Ma, J. Y. Kim, K. Lee, A. J. Heeger, Macromol. Rapid Commun. 2007, 28, 1776.
[35] Y. Y. Kim, S. Cook, S. M. Tuladhr, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C.-S. Ha and M. Ree, Nat. Mater., 2006, 5, 197.
[36] F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv. Funct. Mater., 2003, 13, 85.
[37] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, Nat. Mater., 2005, 4, 864.
[38] A. J. Moulé and K. Meerholz, Adv. Mater., 2008, 20, 240.
[39] J. Peet, C. Soci, R. C. Coffin, T. Q. Nguyen, A. Mikhailovsky, D. Moses and G. C. Bazan, Appl. Phys. Lett., 2006, 89, 252105.
[40] J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger and G. C. Bazan, Nat. Mater., 2007 , 6, 497.
[41] Y. Yao, J. Hou, Z. Xu, G. Li and Y. Yang, Adv. Funct. Mater., 2008, 18, 1783.
[42] C. J. Ko, Y. K. Lin, F. C. Chen, C. W. Chu, Appl. Phys. Lett., 2007, 90, 063509.
[43] A. W. Hains and T. J. Marks, Appl. Phys. Lett., 2008, 92, 023504.
[44] C. Y. Li, T. C. Wen and T. F. Guo, J. Mater. Chem., 2008, 18, 4478.
[45] J. W. Jung, J. U. Lee, and W. H. Jo, J. Phys. Chem. C, 2010, 114, 633.
[46] V. Shrotriya, G. Li, Y. Yao, C. W. Chu, and Y. Yang, Appl. Phys. Lett., 2006, 88, 073508.
[47] M. D. Irwin, D. B. Buchholz, A. W. Hains, R. P. H. Chang, and T. J. Marks, PNAS, 2008, 105, 2783.
[48] S. Han, W. S. Shin, M. Seo, D. Gupta, S. J. Moonb, S. Yoo, Org. Electronics, 2009, 10, 791
[49] J. Y. Kim, S. H. Kim, H.-H. Lee, K. Lee, W. Ma, X. Gong and A. J. Heeger, Adv. Mater., 2006, 18, 572.
[50] K. Lee, J. Y. Kim, S. H. Park, S. H. Kim, S. Cho, and A. J. Heeger, Adv. Mater., 2007, 19, 2445.
[51] H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K.-Y. Jen, Adv. Mater., 2008, 20, 2376.
[52] S. H. Oh, S. I. Na, Jang Jo, B. Lim, D. Vak, and D. Y. Kim, Adv. Funct. Mater., 2010, 20, 1.
[53] Q. Wei, T. Nishizawa, K. Tajima, and K. Hashimoto, Adv. Mater., 2008, 20, 2211.
[54] A. Kumar, G. Li, Z. Hong and Y. Yang, Nanotechnology, 2009, 20, 165202.
[55] C. W. Liang, W. F. Su, and L. Wang, Appl. Phys. Lett., 2009, 95, 133303
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *