帳號:guest(3.134.87.95)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳娸玫
作者(外文):Chen, Chi-Mei
論文名稱(中文):以(La,Ag)(Co,Fe)O3-δ為固態氧化物燃料電池陽極行煤合成氣反應之研究
論文名稱(外文):On the performance of (La, Ag)(Co, Fe)O3-δ as solid oxide fuel cell anode material reacting with coal syngas
指導教授(中文):黃大仁
指導教授(外文):Huang, Ta-Jen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9732537
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:117
中文關鍵詞:鈣鈦礦結構煤合成氣固態氧化物燃料電池
外文關鍵詞:perovskitecoal syngassolid oxide fuel cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:25
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
煤合成氣(Coal syngas)為氫氣與一氧化碳之混合氣,具有製程簡單、價格低廉等優點,且氫氣與一氧化碳兩者皆為最容易被還原之氣體,在通入陽極端前不需再經過氣體重組之步驟,而可直接反應生成水氣與二氧化碳,於應用上頗具潛力。
在陽極材料的選擇上,傳統的鎳觸媒如60Ni-YSZ,易於表面生成積碳,對於一氧化碳之活性較差。本研究選用具有混合導體特性之鈣鈦礦結構材料LSCF (La0.58Sr0.4Co0.2Fe0.8O3) 及LACF (La0.7Ag0.3Co0.2Fe0.8O3) 為陽極材料,並含浸不同活性金屬Cu、Ag,期能提升對水煤氣之反應性,並避免積碳,以改善此問題。
將LSCF及LACF混合導氧離子性較佳的GDC,並含浸2 wt% Cu或2 wt% Ag,配製成LSCF-50GDC-2Cu、LSCF-50GDC-2Ag、LACF73-50GDC三種陽極漿料,塗佈於YSZ電解質生胚上,陰極端使用活性極好的LSCF-50GDC-2Cu,通入100 mL/min煤合成氣為燃料,測得最大功率密度分別為22.658、37.537與23.496 mW•cm-2。
觀察陽極端通入煤合成氣之電流表現,可發現因CO之擴散及電化學反應速率較慢,因此H2之效能較CO為佳,在某些混合比例下,電池擁有相似之混合效能,推測陽極端有水氣轉移反應的發生,令CO與H2比例維持平衡關係。
使用煤合成氣為陽極燃料時,Ag觸媒比Cu觸媒之表現來得優越,推測以Ag為活性金屬時,氧於Ag上移動較快,可提升燃料催化效果。然而,含Ag量不能太多,否則將會覆蓋氧空缺,不利O2-之擴散。
由定電壓實驗可看出,電池效能受燃料比例與積碳所構成之電流收集層相互影響;而電池於陽極端之反應機制,推測與被吸附之H原子與O2-形成之OH基團相當重要,可促進形成COOH反應中間體,以利CO之氧化成CO2。
由此可知,鈣鈦礦材料對於煤合成氣具有一定之催化活性,以其為陽極材料,可提升電池效能,且在操作過程中並無失活現象。
第一章 緒論 1
第二章 文獻回顧 5
2-1 固態氧化物燃料電池 5
2-1-1 簡介 5
2-1-2 原理 7
2-2 電池組成 8
2-2-1 陽極 8
2-2-2 陰極 10
2-2-3 電解質 12
2-3 鈣鈦礦型氧化物陽極材料 16
2-3-1 鈣鈦礦型結構 16
2-3-2 鈣鈦礦氧化物應用於陽極材料 18
2-4 燃料的選擇 23
2-4-1 煤合成氣 23
2-4-2 CO氧化觸媒 27
第三章 研究構想 32
第四章 實驗方法 35
4-1 實驗藥品與氣體 35
4-1-1 實驗藥品 35
4-1-2 實驗氣體 36
4-2 材料製備方法 37
4-2-1 La0.58Sr0.4Co0.2Fe0.8O3(LSCF) 37
4-2-2 La0.7Ag0.3Co0.2Fe0.8O3(LACF) 38
4-2-3 Ce0.9Gd0.1O1.95 (GDC) 39
4-2-4 陽極複合材料 40
4-3 電池單元製作 41
4-3-1 旋轉塗佈漿料製備 41
4-3-2 電池製作 42
4-4 分析儀器與實驗裝置 44
4-4-1 儀器 44
4-4-2 實驗裝置 45
4-5 實驗步驟與流程 46
4-5-1 定溫還原反應實驗 46
4-5-2 電池封裝 47
4-4-2 電池效能測試 48
第五章 實驗結果與討論 50
5-1 X光繞射分析(XRD) 50
5-1-1 GDC 50
5-1-2 La0.58Sr0.4Co0.2Fe0.8 O3-δ 52
5-1-2 (La,Ag)Co0.2Fe0.8O3-δ 53
5-2 鈣鈦礦粉體定溫還原反應 56
5-2-1 氫氣定溫反應 56
5-2-2 一氧化碳定溫反應 59
5-2-3 水煤氣定溫反應 61
5-3 鈣鈦礦混合GDC粉體定溫還原反應 65
5-3-1 氫氣定溫反應 65
5-3-2 一氧化碳定溫反應 67
5-3-3 水煤氣定溫反應 69
5-4 電池性能測試 72
5-4-1 電池之SEM微結構圖 72
5-4-2 不同燃料比例所造成之影響 75
5-4-2 不同陽極材料之比較 83
5-4-3 拉電過程紀錄 89
5-5 定溫定電壓測試 91
5-5-1 水煤氣之開路與閉路反應 91
5-5-2 合成氣之定電壓反應分析 95
5-5-3 反應機構推導 106
第六章 結論 110
第七章 未來方向 112
第八章 參考資料 113
1.黃鎮江, 燃料電池. 全華科技圖書股份有限公司, 2005年3月二版.
2.Gong, W.Q., S. Gopalan, and U.B. Pal, Performance of intermediate temperature (600-800 degrees C) solid oxide fuel cell based on Sr and Mg doped lanthanum-gallate electrolyte. Journal of Power Sources, 2006. 160(1): p. 305-315.
3.Ishihara, T., Development of new fast oxide ion conductor and application for intermediate temperature solid oxide fuel cells. Bulletin of the Chemical Society of Japan, 2006. 79(8): p. 1155-1166.
4.Yi, Y.F., et al., Fuel flexibility study of an integrated 25 kW SOFC reformer system. Journal of Power Sources, 2005. 144(1): p. 67-76.
5.Suwanwarangkul, R., et al., Experimental and modeling study of solid oxide fuel cell operating with syngas fuel. Journal of Power Sources, 2006. 161(1): p. 308-322.
6.Hartley, A., et al., La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells. Catalysis Today, 2000. 55(1-2): p. 197-204.
7.Haile, S.M., Fuel cell materials and components. Acta Materialia, 2003. 51(19): p. 5981-6000.
8.Goodenough, J.B., Ceramic technology - Oxide-ion conductors by design. Nature, 2000. 404(6780): p. 821-823.
9.Mai, A., et al., Time-dependent performance of mixed-conducting SOFC cathodes. Solid State Ionics, 2006. 177(19-25): p. 1965-1968.
10.Ishihara, T., H. Matsuda, and Y. Takita, DOPED LAGAO3 PEROVSKITE-TYPE OXIDE AS A NEW OXIDE IONIC CONDUCTOR. Journal of the American Chemical Society, 1994. 116(9): p. 3801-3803.
11.Litzelman, S.J., et al., Opportunities and Challenges in Materials Development for Thin Film Solid Oxide Fuel Cells. Fuel Cells, 2008. 8(5): p. 294-302.
12.Sun, C.W. and U. Stimming, Recent anode advances in solid oxide fuel cells. Journal of Power Sources, 2007. 171(2): p. 247-260.
13.E. Hafel, H.G.L., Elektrodencharakterisierumg und Grenzteperatur Beider Elektrochemischen Messungder Sauerstoffaktivitat an Platin. Solid State Ionics, 1987. 23: p. 235-239.
14.B. A. van Hassel, B.A.B., A. J. Burggraaf, Electrode Polarization at Au,O2(g)/Yttria Stabilized Zirconia Interface.PartI: Theoretical Considerations of Reaction Model. Solid State Ionics, 1991. 48: p. 139-154.
15.J. Mizusaki, K.A., S. yamauchi, K. Fueki, Electrode Reaction at Pt,O2(g)/Stabilized Zirconia Interface .PartI: Theoretical Considerations of Reaction Model Solid State Ionics, 1987. 22: p. 313-322.
16.Mizusaki, J., et al., PREPARATION OF NICKEL PATTERN ELECTRODES ON YSZ AND THEIR ELECTROCHEMICAL PROPERTIES IN H2-H2O ATMOSPHERES. Journal of the Electrochemical Society, 1994. 141(8): p. 2129-2134.
17.Atkinson, A., et al., Advanced anodes for high-temperature fuel cells. Nature Materials, 2004. 3(1): p. 17-27.
18.Wincewicz, K.C. and J.S. Cooper, Taxonomies of SOFC material and manufacturing alternatives. Journal of Power Sources, 2005. 140(2): p. 280-296.
19.Beckel, D., et al., Electrochemical performance of LSCF based thin film cathodes prepared by spray pyrolysis. Solid State Ionics, 2007. 178(5-6): p. 407-415.
20.Fu, C.J., et al., Electrochemical characteristics of LSCF-SDC composite cathode for intermediate temperature SOFC. Electrochimica Acta, 2007. 52(13): p. 4589-4594.
21.Robertson, N.L. and J.N. Michaels, OXYGEN-EXCHANGE ON PLATINUM-ELECTRODES IN ZIRCONIA CELLS - LOCATION OF ELECTROCHEMICAL REACTION SITES. Journal of the Electrochemical Society, 1990. 137(1): p. 129-135.
22.Weber, A. and E. Ivers-Tiffee, Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications. Journal of Power Sources, 2004. 127(1-2): p. 273-283.
23.許寧逸, 由碳能朝向氫能的燃料電池. 科學發展月刊, 2003. 367.
24.Inaba, H. and H. Tagawa, Ceria-based solid electrolytes - Review. Solid State Ionics, 1996. 83(1-2): p. 1-16.
25.Ge, L., et al., Facile autocombustion synthesis of La0.6Sr0.4Co0.2Fe0.8O3-delta (LSCF) perovskite via a modified complexing sol-gel process with NH4NO3 as combustion aid. Journal of Alloys and Compounds, 2008. 450(1-2): p. 338-347.
26.Watanabe, M., et al., HIGH-PERFORMANCE CATALYZED-REACTION LAYER FOR MEDIUM-TEMPERATURE OPERATING SOLID OXIDE FUEL-CELLS. Journal of the Electrochemical Society, 1994. 141(2): p. 342-346.
27.Tao, S.W. and J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials, 2003. 2(5): p. 320-323.
28.Ruiz-Morales, J.C., et al., On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3-delta as both anode and cathode material with improved microstructure in solid oxide fuel cells. Electrochimica Acta, 2006. 52(1): p. 278-284.
29.Wan, J., J.H. Zhu, and J.B. Goodenough, La0.75Sr0.25Cr0.5Mn0.5O3-delta+Cu composite anode running on H2 and CH4 fuels. Solid State Ionics, 2006. 177(13-14): p. 1211-1217.
30.Sin, A., et al., Stabilisation of composite LSFCO-CGO based anodes for methane oxidation in solid oxide fuel cells. Journal of Power Sources, 2005. 145(1): p. 68-73.
31.Brunaccini, G., et al., Investigation composite Ni-doped perovskite anode catalyst for electrooxidation of hydrogen in solid oxide fuel cell. International Journal of Hydrogen Energy, 2008. 33(12): p. 3150-3152.
32.Huang, Y.H., et al., Double perovskites as anode materials for solid-oxide fuel cells. Science, 2006. 312(5771): p. 254-257.
33.Stoukides, M., Solid-electrolyte membrane reactors: Current experience and future outlook. Catalysis Reviews-Science and Engineering, 2000. 42(1-2): p. 1-70.
34.Sasaki, K., et al., Current-voltage characteristics and impedance analysis of solid oxide fuel cells for mixed H-2 and CO gases. Journal of the Electrochemical Society, 2002. 149(3): p. A227-A233.
35.Weber, A., et al., Oxidation of H2, CO and methane in SOFCs with Ni/YSZ-cermet anodes. Solid State Ionics, 2002. 152-153: p. 543-550.
36.Aloui, T. and K. Halouani, Analytical modeling of polarizations in a solid oxide fuel cell using biomass syngas product as fuel. Applied Thermal Engineering, 2007. 27(4): p. 731-737.
37.Pomfret, M.B., J.C. Owrutsky, and R.A. Walker, In situ studies of fuel oxidation in solid oxide fuel cells. Analytical Chemistry, 2007. 79(6): p. 2367-2372.
38.Costa-Nunes, O., R.J. Gorte, and J.M. Vohs, Comparison of the performance of Cu-CeO2-YSZ and Ni-YSZ composite SOFC anodes with H2, CO, and syngas. Journal of Power Sources, 2005. 141(2): p. 241-249.
39.Imamura, S., et al., OXIDATION OF CARBON-MONOXIDE CATALYZED BY MANGANESE SILVER COMPOSITE OXIDES. Journal of Catalysis, 1988. 109(1): p. 198-205.
40.Song, K.S., et al., Catalytic combustion of CH4 and CO on La1-xMxMnO3 perovskites. Catalysis Today, 1999. 47(1-4): p. 155-160.
41.Machocki, A., et al., Manganese-lanthanum oxides modified with silver for the catalytic combustion of methane. Journal of Catalysis, 2004. 227(2): p. 282-296.
42.Choudhary, V.R., et al., Low-temperature total oxidation of methane over Ag-doped LaMO3 perovskite oxides. Chemical Communications, 1996(9): p. 1021-1022.
43.Choudhary, V.R., B.S. Uphade, and S.G. Pataskar, Low temperature complete combustion of methane over Ag-doped LaFeO3 and LaFe0.5Co0.5O3 perovskite oxide catalysts. Fuel, 1999. 78(8): p. 919-921.
44.Leng, Y.J., et al., Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cells. Journal of Power Sources, 2003. 117(1-2): p. 26-34.
45.Brouer, G.G., H.Z. Anorg, Allg. Chem., 1954. 207.
46.Hansen, K.K. and K.V. Hansen, A-site deficient (La0.6Sr0.4)1-sFe0.8Co0.2O3-[delta] perovskites as SOFC cathodes. Solid State Ionics, 2007. 178(23-24): p. 1379-1384.
47.Kucharczyk, B. and W. Tylus, Partial substitution of lanthanum with silver in the LaMnO3 perovskite: Effect of the modification on the activity of monolithic catalysts in the reactions of methane and carbon oxide oxidation. Applied Catalysis a-General, 2008. 335(1): p. 28-36.
48.Jiang, Y. and A.V. Virkar, Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs. Journal of the Electrochemical Society, 2003. 150(7): p. A942-A951.
49.Wang, F.Y., S.F. Cheng, and B.Z. Wan, Porous Ag-CGO cermets as anode materials for ITSOFC using CO fuel. Catalysis Communications, 2008. 9(7): p. 1595-1599.
50.Jacobs, G., et al., Water-gas shift: comparative screening of metal promoters for metal/ceria systems and role of the metal. Applied Catalysis a-General, 2004. 258(2): p. 203-214.
51.Wang, X. and R.J. Gorte, The effect of Fe and other promoters on the activity of Pd/ceria for the water-gas shift reaction. Applied Catalysis a-General, 2003. 247(1): p. 157-162.
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *