帳號:guest(3.129.211.87)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳慕丞
作者(外文):Chan, Mu-Chang
論文名稱(中文):利用帶有FLP/Frt系統的重組桿狀病毒轉導脂肪幹細胞並且運用在骨缺陷修復
論文名稱(外文):Baculovirus-Engineered FLP/Frt System in Adipose Derived Stem Cells and Its Applications in Segmental Bone Defect Healing
指導教授(中文):胡育誠
指導教授(外文):Hu, Yu-Chen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9732544
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:72
中文關鍵詞:脂肪幹細胞骨缺陷桿狀病毒BMP2VEGF
外文關鍵詞:ADSCsmassive bone defectsbaculovirus
相關次數:
  • 推薦推薦:0
  • 點閱點閱:280
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
大範圍骨缺陷通常不易痊癒且治療方式複雜,牽涉到許多困難的外科手術。近來,結合病毒基因載體與間葉幹細胞療法發展出之新穎技術,已顯示可協助並加速骨修復。其中脂肪幹細胞(ADSCs)由於容易分離培養,近來亦受到廣泛研究應用。本研究目的探討藉由FLP/Frt基因延長表現系統之新型重組桿狀病毒轉導ADSCs後是否可以加速修復大範圍骨缺陷。首先利用帶有FLP/Frt系統的基因重組桿狀病毒Bac-FCBW(表現第二型骨型態蛋白(BMP2))及Bac-FCVW(表現血管內皮細胞生長因子(VEGF))轉導ADSCs,觀察表現BMP2或VEGF能力。結果顯示,帶有FLP/Frt表現系統的新型桿狀病毒,可延長基因表現達到28天以上,並可有效促使ADSCs往硬骨細胞分化。我們將轉導過不同重組桿狀病毒的ADSCs混合種入PLGA載體並移植入紐西蘭白兔股骨缺陷(critical-sized femora bone defect)以評估加速骨缺陷修復的效果。X-ray結果顯示,實驗組(植入帶有FLP/Frt系統之ADSCs)不僅可於植入2週時間後,形成新骨連結骨缺陷;並且在植入4週時間後,所有動物皆完成骨缺陷修復(N>6)。另外藉由正子斷層(PET),電腦斷層(CT)掃描,H&E染色與機械應力測試,亦發現與對照組(植入假性轉導或CMV啟動子表現之BMP2, VEGF)比較,混合移植經Bac-FCBW與Bac-FCVW轉導之ADSCs確實可加速大範圍骨缺陷修復。這些實驗結果顯示,結合FLP/Frt延長表現系統之新型桿狀病毒基因治療與ADSCs,可作為大範圍骨缺陷重建的另一選擇。
1. 文獻回顧 9
1-1 桿狀病毒 9
1-1-1 桿狀病毒之簡介 9
1-1-2 桿狀病毒之表現系統 9
1-1-2-1 昆蟲細胞之表現系統 10
1-1-2-2 桿狀病毒於哺乳動物細胞之表現系統 10
1-2 長效表現系統(FLP/FRT EXPRESSION SYSTEM) 12
1-2-1 長效表現生長因子 12
1-3 骨缺陷修復 12
1-3-1 複合生長因子對於骨修復之影響 13
1-3-2 利用桿狀病毒表現生長因子 14
1-3-3 利用骨隨幹細胞修復骨缺陷實驗 15
1-3-3-1 紐西蘭大白兔大腿骨骨缺損之簡介 15
1-4 脂肪幹細胞之簡介 15
1-4-1 脂肪幹細胞 15
1-4-2 脂肪幹細胞的誘導分化 17
1-5 實驗動機 19
2. 材料與方法 27
2-1 脂肪幹細胞純化 27
2-1-1 分離脂肪幹細胞 27
2-1-2繼代 27
2-2 重組桿狀病毒 28
2-2-1 建構重組桿狀病毒 28
2-2-2 轉染製作P0重組桿狀病毒 28
2-2-3 P1重組桿狀病毒 29
2-2-4 P2重組桿狀病毒 29
2-3 轉導策略 29
2-3-1 桿狀病毒病毒效價的測定 29
2-3-2轉導脂肪幹細胞 30
2-3-3間隔轉導脂肪幹細胞 30
2-4 流式細胞儀之分析 31
2-5 酵素免疫分析法 (ELISA) 31
2-6 鈣沉澱定量 32
2-7 紐西蘭大白兔長骨缺損修復實驗 33
2-7-1 紐西蘭大白兔長骨骨缺損之簡介 33
2-7-2 PLGA細胞支架製備 33
2-7-3 紐西蘭大白兔植入手術程序 34
2-8 骨缺陷修復評估 34
2-8-1 骨缺損修復初步評估 34
2-8-2 Critical defect的骨再生與血管重建評估 34
2-8-3 電腦斷層掃瞄(Computed Tomography Imaging,□CT) 35
2-8-4骨缺陷的代謝密度評估 35
2-8-5 H&E染色: 36
2-8-6 Critical defect血管新生評估: 36
2-8-7 critical defect的再生骨機械應力測試 36
3. 結果與討論 44
3-1 EGFP表現量 44
3-2 轉導方式與成效 45
3-2-1 轉導方式 46
3-2-2間隔轉導 47
3-2-3 延長表現 48
3-2-3 BMP-2表現量 49
3-2-4 VEGF表現量 49
3-3 分化程度 50
3-3-1 鈣沉澱量 50
3-4 股骨骨缺陷修復程度 51
3-4-1 X-ray 體外照相 52
4. 結論 62
5. 未來展望 64
5-1 免疫反應與安全性 64
5-1-1 免疫豁免 64
5-1-2 移植動物體內BMP-2之表現 64
5-1-3 移植動物產生抗人類BMP-2抗體(anti-hBMP-2 Ab)情形 64
5-2 HUVEC TUBULAR NETWORK FORMATION 65
6. 參考文獻 67
1. Kofron, M.D. and C.T. Laurencin, Bone tissue engineering by gene delivery. Adv. Drug Delivery Rev. , 2006. 58: p. 555-576.
2. Phillips, J.E., C.A. Gersbach, and A.J. Garcia, Virus-based gene therapy strategies for bone regeneration. Biomaterials, 2007. 28(2): p. 211-229.
3. Qin, Y., et al., Chromosomal instability of murine adipose tissue-derived mesenchymal stem cells in long-term culture and development of cloned embryos. Cloning Stem Cells, 2009. 11(3): p. 445-52.
4. Hofmann, C., et al., Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc Natl Acad Sci U S A, 1995. 92(22): p. 10099-103.
5. Kost, T.A. and J.P. Condreay, Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol, 2002. 20(4): p. 173-80.
6. Sandig, V., et al., Gene transfer into hepatocytes and human liver tissue by baculovirus vectors. Hum Gene Ther, 1996. 7(16): p. 1937-45.
7. Shoji, I., et al., Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J Gen Virol, 1997. 78 ( Pt 10): p. 2657-64.
8. Airenne, K.J., et al., Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery. Gene Ther, 2000. 7(17): p. 1499-504.
9. Pieroni, L., D. Maione, and N. La Monica, In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors. Hum Gene Ther, 2001. 12(8): p. 871-81.
10. Hu, Y.-C., K. Yao, and T.-Y. Wu, Baculovirus as an expression and/or delivery vehicle for vaccine antigens. Expert. Rev. Vaccines, 2008. 7: p. 363-371.
11. Chan, Z.-R., et al., Determination of the baculovirus transducing titer in mammalian cells. Biotechnol. Bioeng., 2006. 93(3): p. 564-571.
12. Hu, Y.-C., et al., Generation of chimeric baculovirus with histidine-tags displayed on the envelope and its purification using immobilized metal affinity chromatography. Enzyme Microb. Technol., 2003. 33: p. 445-452.
13. Tsai, C.-T., et al., Factors influencing the production and storage of baculovirus for gene delivery: An alternative perspective from the transducing titer assay. Enzyme Microb. Technol., 2007. 40: p. 1345-1351.
14. Hsu, C.-S., et al., Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol. Bioeng., 2004. 88(1): p. 42-51.
15. Lee, H.-P., et al., Baculovirus transduction of rat articular chondrocytes: Roles of cell cycle. J. Gene Med. , 2007. 9: p. 33-43.
16. Shen, H.-C., et al., Baculovirus-mediated gene transfer is attenuated by sodium bicarbonate. J. Gene Med. , 2007. 9: p. 470-478.
17. Lo, W.H., et al., Development of a hybrid baculoviral vector for sustained transgene expression. Mol Ther, 2009. 17(4): p. 658-66.
18. Virk, M.S., et al., Influence of short-term adenoviral vector and prolonged lentiviral vector mediated bone morphogenetic protein-2 expression on the quality of bone repair in a rat femoral defect model. Bone, 2008. 42(5): p. 921-31.
19. Lufino, M.M., P.A. Edser, and R. Wade-Martins, Advances in high-capacity extrachromosomal vector technology: episomal maintenance, vector delivery, and transgene expression. Mol Ther, 2008. 16(9): p. 1525-38.
20. Ren, C., et al., Establishment and applications of epstein-barr virus-based episomal vectors in human embryonic stem cells. Stem Cells, 2006. 24(5): p. 1338-47.
21. Black, J. and J.M. Vos, Establishment of an oriP/EBNA1-based episomal vector transcribing human genomic beta-globin in cultured murine fibroblasts. Gene Ther, 2002. 9(21): p. 1447-54.
22. Bishop, G.B. and T.A. Einhorn, Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. Int Orthop, 2007. 31(6): p. 721-7.
23. Carofino, B.C. and J.R. Lieberman, Gene therapy applications for fracture-healing. J Bone Joint Surg Am, 2008. 90 Suppl 1: p. 99-110.
24. Wang, E.A., et al., Recombinant human bone morphogenetic protein induces bone formation. Proc. Natl. Acad. Sci. USA, 1990. 87(6): p. 2220-2224.
25. Gamradt, S.C. and J.R. Lieberman, Genetic modification of stem cells to enhance bone repair. Ann. Biomed. Eng., 2004. 32(1): p. 136-147.
26. Partridge, K.A. and R.O.C. Oreffo, Gene delivery in bone tissue engineering: Progress and prospects using viral and nonviral strategies. Tissue Engineering, 2004. 10(1-2): p. 295-307.
27. Peng, H., et al., VEGF improves, whereas sFlt1 inhibits, BMP-2-induced bone formation and bone healing through modulation of angiogenesis. J Bone Miner Res, 2005. 20(11): p. 2017-27.
28. Li, G., et al., The dose of growth factors influences the synergistic effect of vascular endothelial growth factor on bone morphogenetic protein 4-induced ectopic bone formation. Tissue Eng Part A, 2009. 15(8): p. 2123-33.
29. Sung, L.-Y., et al., Modulation of chondrocyte phenotype via baculovirus-mediated growth factor expression. Biomaterials, 2007. 28: p. 3437-3447.
30. Chen, H.-C., et al., The repair of osteochondral defects using baculovirus-mediated gene transfer with de-differentiated chondrocytes in bioreactor culture. Biomaterials, 2009. 30: p. 674-681.
31. Ho, Y.-C., et al., Baculovirus transduction of human mesenchymal stem cell-derived progenitor cells: variation of transgene expression with cellular differentiation states. Gene Ther., 2006. 13: p. 1471-1479.
32. Lee, H.-P., et al., Variation of baculovirus-harbored transgene transcription among mesenchymal stem cell-derived progenitors leads to varied expression. Biotechnol. Bioeng., 2007. 97 p. 649-655.
33. Chuang, C.-K., et al., Baculovirus as a new gene delivery vector for stem cells engineering and bone tissue engineering. Gene Ther., 2007. 14: p. 1417-1424.
34. da Silva Meirelles, L., P.C. Chagastelles, and N.B. Nardi, Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci, 2006. 119(Pt 11): p. 2204-13.
35. Torres, F.C., et al., Stem cells from the fat tissue of rabbits: an easy-to-find experimental source. Aesthetic Plast Surg, 2007. 31(5): p. 574-8.
36. Mehlhorn, A.T., et al., Differential effects of BMP-2 and TGF-beta1 on chondrogenic differentiation of adipose derived stem cells. Cell Prolif, 2007. 40(6): p. 809-23.
37. Knippenberg, M., et al., Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem Biophys Res Commun, 2006. 342(3): p. 902-8.
38. Erickson, G.R., et al., Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun, 2002. 290(2): p. 763-9.
39. Devine, S.M., et al., Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp. Hematol, 2001. 29(2): p. 244-255.
40. Bruder, S.P., N. Jaiswal, and S.E. Haynesworth, Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell Biochem., 1997. 64(2): p. 278-294.
41. Sasaki, M., et al., Mesenchymal stem cells are recruited into wounded skin and contribute to wound repair by transdifferentiation into multiple skin cell type. J. Immunol., 2008. 180(4): p. 2581-2587.
42. Zaminy, A., et al., Osteogenic differentiation of rat mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells: melatonin as a differentiation factor. Iran Biomed J, 2008. 12(3): p. 133-41.
43. Dragoo, J.L., et al., Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res, 2003. 21(4): p. 622-9.
44. Zuk, P.A., et al., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng, 2001. 7(2): p. 211-28.
45. Tapp, H., et al., Adipose-Derived Stem Cells: Characterization and Current Application in Orthopaedic Tissue Repair. Exp Biol Med (Maywood), 2008.
46. Tapp, H., et al., Adipose-derived stem cells: characterization and current application in orthopaedic tissue repair. Exp Biol Med (Maywood), 2009. 234(1): p. 1-9.
47. Zhu, Y., et al., Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct, 2008. 26(6): p. 664-75.
48. Noel, D., et al., Short-term BMP-2 expression is sufficient for in vivo osteochondral differentiation of mesenchymal stem cells. Stem Cells, 2004. 22(1): p. 74-85.
49. Hsu, W.K., et al., Stem cells from human fat as cellular delivery vehicles in an athymic rat posterolateral spine fusion model. J Bone Joint Surg Am, 2008. 90(5): p. 1043-52.
50. Hu, Y.C., et al., Enhancement and prolongation of baculovirus-mediated expression in mammalian cells: focuses on strategic infection and feeding. Biotechnol Prog, 2003. 19(2): p. 373-9.
51. Hsu, C.S., et al., Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol Bioeng, 2004. 88(1): p. 42-51.
52. Engstrand, T., et al., Transient production of bone morphogenetic protein 2 by allogeneic transplanted transduced cells induces bone formation. Hum Gene Ther, 2000. 11(1): p. 205-11.
53. Jeon, O., et al., In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically. Tissue Eng Part A, 2008. 14(8): p. 1285-94.
54. Sethe, S., A. Scutt, and A. Stolzing, Aging of mesenchymal stem cells. Ageing Res Rev, 2006. 5(1): p. 91-116.
55. Cowan, C.M., et al., Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol, 2004. 22(5): p. 560-7.
56. Yoon, E., et al., In vivo osteogenic potential of human adipose-derived stem cells/poly lactide-co-glycolic acid constructs for bone regeneration in a rat critical-sized calvarial defect model. Tissue Eng, 2007. 13(3): p. 619-27.
57. Peterson, B., et al., Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng, 2005. 11(1-2): p. 120-9.
58. Donsante, A., et al., AAV vector integration sites in mouse hepatocellular carcinoma. Science, 2007. 317(5837): p. 477-477.
59. Conejero, J.A., et al., Repair of palatal bone defects using osteogenically differentiated fat-derived stem cells. Plast Reconstr Surg, 2006. 117(3): p. 857-63.
60. Vunjak-Novakovic, G., et al., Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage. J Orthop Res, 1999. 17(1): p. 130-8.
61. Ryan, J.M., et al., Mesenchymal stem cells avoid allogeneic rejection. J Inflamm (Lond), 2005. 2: p. 8.
62. Le Blanc, K., et al., HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol, 2003. 31(10): p. 890-6.
63. English, K., F.P. Barry, and B.P. Mahon, Murine mesenchymal stem cells suppress dendritic cell migration, maturation and antigen presentation. Immunol Lett, 2008. 115(1): p. 50-8.
64. Uccelli, A., L. Moretta, and V. Pistoia, Immunoregulatory function of mesenchymal stem cells. Eur J Immunol, 2006. 36(10): p. 2566-73.
65. Gronowski, A.M., et al., Baculovirus stimulates antiviral effects in mammalian cells. J Virol, 1999. 73(12): p. 9944-51.
66. Beck, N.B., J.S. Sidhu, and C.J. Omiecinski, Baculovirus vectors repress phenobarbital-mediated gene induction and stimulate cytokine expression in primary cultures of rat hepatocytes. Gene Ther, 2000. 7(15): p. 1274-83.
67. Abe, T., et al., Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J Immunol, 2003. 171(3): p. 1133-9.
68. Campeau, P.M., et al., Mesenchymal stromal cells engineered to express erythropoietin induce anti-erythropoietin antibodies and anemia in allorecipients. Mol Ther, 2009. 17(2): p. 369-72.
69. Eliopoulos, N., et al., Allogeneic marrow stromal cells are immune rejected by MHC class I- and class II-mismatched recipient mice. Blood, 2005. 106(13): p. 4057-65.
70. Wang, Y., et al., Survival of bone marrow-derived mesenchymal stem cells in a xenotransplantation model. J Orthop Res, 2007. 25(7): p. 926-32.
71. Rameshwar, P., Casting doubt on the safety of "off-the-shelf" mesenchymal stem cells for cell therapy. Mol Ther, 2009. 17(2): p. 216-8.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用miRNA基因改質人類脂肪幹細胞於頭蓋骨典型缺損修復之應用
2. 以桿狀病毒改質脂肪幹細胞片長效表現神經生長因子改善神經再生
3. 以桿狀病毒轉導老鼠關節軟骨細胞和人類間葉幹細胞以及在軟骨組織工程上之應用
4. 桿狀病毒/哺乳動物細胞表現系統轉導條件最適化之研究
5. 結合超過濾系統與固定化金屬親合力層析法以純化昆蟲桿狀病毒
6. 探討軟骨細胞的細胞週期及抗病毒機制對桿狀病毒轉導效率的影響
7. 腸病毒71型類病毒顆粒的表現、特性分析及其應用為抗腸病毒疫苗之評估
8. 以桿狀病毒於新型生物反應器BelloCell500®轉導BHK細胞表現D型肝炎類病毒顆粒:生產與純化程序之最適化
9. SARS-CoV之結構蛋白質在昆蟲細胞內之表現與純化程序之探討
10. 利用桿狀病毒/昆蟲細胞表現系統表現家禽流行性感冒病毒血球凝集素 (HA)蛋白質並以親和性管柱層析法純化
11. 應用於軟骨組織工程的醣胺素/幾丁聚醣材料開發及其調控ECM產生及基因表現機制探討
12. 桿狀病毒結合新型生化反應器在軟骨組織工程之應用
13. 昆蟲桿狀病毒對哺乳動物細胞的轉導能力之測定及影響其轉導能力之因素
14. 桿狀病毒表現之生長因子促進軟骨細胞分化狀態之研究
15. 以桿狀病毒/哺乳動物細胞表現系統生產D型肝炎病毒蛋白質與類病毒顆粒之研究
 
* *