帳號:guest(18.188.175.182)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):楊巡
作者(外文):Yang, Hsun
論文名稱(中文):以耗散粒子動力學研究溫度對於PS-b-PI 分相形態影響
論文名稱(外文):Study of Temperature Effect on Morphology in PS-b-PI System via Dissipative Particle Dynamics
指導教授(中文):張榮語
指導教授(外文):Chang, Rong-Yeu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9732547
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:78
中文關鍵詞:耗散粒子動力學雙團聯式共聚合體形態溫度
外文關鍵詞:Dissipative Particle DynamicsDPDPS-b-PIDiblock copolymerMorphologyTemperature
相關次數:
  • 推薦推薦:0
  • 點閱點閱:322
  • 評分評分:*****
  • 下載下載:4
  • 收藏收藏:0
本研究以耗散粒子動力學模擬方法討論固定單體數目之分子鏈段聚苯乙烯-聚異戊二烯雙團聯式共聚合體(PS-b-PI)分相情形。改變鏈段PS/PI組成比例以及平衡溫度下,我們可以觀察到自組裝的現象以及最終平衡形態。初步階段,建立耗散粒子動力學模型之程式,以及將程式模擬結果與文獻比對,PS-b-PI系統,將模擬情形之比對。第二階段,將系統的平衡溫度(T=300K、350K、400K、450K、500K、550K)進行電腦模擬,結果繪製成相圖、將相圖與文獻比對。在同組成分率下設定的溫度由低到高的時候,分相的結果會循著一定的規則變化。由層板分相變為穿孔性層板,由穿孔性層板改為六角柱狀堆積,由六角柱狀堆積改為體心立方堆積,由體心立方堆積變為無序排列。
In this research we carried out studies upon phase separation of the polystyrene-polyisoprene diblock copolymers (PS-b-PI) with a fixed number of monomers via dissipative particle dynamics (DPD) simulation. When altering the fractional composition (PS/PI) of the copolymer we observed self-assembly phenomenon and equilibrium morphology of PS-b-PI. The first part of our study is the establishment of the DPD model followed by comparison of simulation results with literature. The second part is altering the simulation equilibrium temperature of system (T= 300K, 350K, 400K, 450K, 500K, 550K), deriving the resulting phase diagram and mapping the results with effective Flory-Huggins parameter chart. Our results show that when the equilibrium temperature is increased while the fractional composition remains constant, the change of equilibrium morphology follows this rule: varying from lamellar layer to perforated lamellar layer, from perforated lamellar layer to hexagonal cylinders, from hexagonal cylinders to body-centered cubic, from body-centered cubic to disorder phase.
摘 要 I
Abstract II
目 錄 III
表 目 錄 VI
圖 目 錄 VII
符 號 說 明 XIV
縮 寫 表 XV
第一章 緒 論 1
1.1 研究動機與目的 1
1.2 耗散粒子動力學引論 2
1.2.1耗散粒子動力學簡介 2
1.3軟凝體簡介 3
1.4 兩性分子 4
第二章 文獻回顧 7
2.1耗散粒子動力學 7
2.1.1溫度對於分相的影響 11
2.2 耗散粒子動力學應用 13
第三章 研究方法 16
3.1耗散粒子動力學與模擬方法 16
3.2 最大斥力參數 21
3.2.1相同粒子最大斥力參數 21
3.2.2 相異粒子最大斥力參數 23
3.3 系統類型與控制 27
3.3.1 Ensemble 27
3.3.2週期性邊界 27
3.3.3最小鏡像法 28
3.4數值演算法 30
3.4.1 Modified Velocity-Verlet Algorithm 30
3.5 性質計算 31
3.5.1溫度(Temperature) 31
3.5.2徑向分佈函數 31
3.5.3迴旋半徑 32
3.5 程式加速計算方法 33
3.5.1 Verlet鄰近列表法 33
第四章 模擬系統 35
4.1模擬的系統介紹 35
4.1.1 PS-b-PI粗粒化模型 35
4.1.2參數設定 36
4.1.3 初始狀態 39
4.3耗散粒子動力學模擬流程 41
4.5對應到真實系統 43
4.5.1 長度 43
4.5.2 時間 44
第五章 結果與討論 45
5.1初步成果 45
5.1.1 力的驗證 45
5.1.2雙團聯式共聚合體系統 46
5.2 溫度對分相形態之影響 53
5.2.1 溫度控制 53
5.2.2 平衡分相形態 55
5.2.3 分相形態相圖 70
5. 3 迴旋半徑 73
5.3.1 組成分率之影響 73
第六章 結論與未來展望 75
6.1結論 75
6.2未來展望 76
參考文獻 77
[1] M. W. Matsen and F. S. Bates, "Unifying Weak- and Strong-Segregation Block Copolymer Theories," Macromolecules, vol. 29, pp. 1091-1098, 1996.
[2] A. K. Khandpur, et al., "Polyisoprene-Polystyrene Diblock Copolymer Phase Diagram near the Order-Disorder Transition," Macromolecules, vol. 28, pp. 8796-8806, 1995.
[3] G. Whitesides and B. Grzybowski, "Self-assembly at all scales," 2002, p. 2418.
[4] C. Park, et al., "Enabling nanotechnology with self assembled block copolymer patterns," Polymer, vol. 44, pp. 6725-6760, 2003.
[5] R. Jones, Soft condensed matter: Oxford University Press, USA, 2002.
[6] P. J. Hoogerbrugge and J. M. V. A. Koelman, "Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics," EPL (Europhysics Letters), vol. 19, pp. 155-160, 1992.
[7] A. G. Schlijper, "Computer simulation of dilute polymer solutions with the dissipative particle dynamics method," Journal of Rheology, vol. 39, p. 567, 1995.
[8] R. D. Groot and P. B. Warren, "Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation," The Journal of Chemical Physics, vol. 107, pp. 4423-4435, 1997.
[9] R. D. Groot, et al., "On the role of hydrodynamic interactions in block copolymer microphase separation," The Journal of Chemical Physics, vol. 110, pp. 9739-9749, 1999.
[10] R. Groot, "Electrostatic interactions in dissipative particle dynamics¡Xsimulation of polyelectrolytes and anionic surfactants," The Journal of Chemical Physics, vol. 118, p. 11265, 2003.
[11] J. M. Ilnytskyi, et al., "Morphological Changes in Block Copolymer Melts Due to a Variation of Intramolecular Branching. Dissipative Particles Dynamics Study," in Macromolecules vol. 41, ed: American Chemical Society, 2008, pp. 9904-9913.
[12] R. Guo, et al., "Solvent-Induced Morphology of the Binary Mixture of Diblock Copolymer in Thin Film: The Block Length and Composition Dependence of Morphology," The Journal of Physical Chemistry B, vol. 113, pp. 2712-2724, 2009.
[13] L. Leibler, "Theory of microphase separation in block copolymers," Macromolecules, vol. 13, pp. 1602-1617, 1980.
[14] S. Sakurai, et al., "Thermoreversible morphology transition between spherical and cylindrical microdomains of block copolymers," Macromolecules, vol. 26, pp. 5796-5802, 1993.
[15] C. Huang, et al., "Phase behavior of an amphiphilic molecule in the presence of two solvents by dissipative particle dynamics," Polymer, vol. 48, pp. 877-886, 2007.
[16] C.-I. Huang and H.-T. Yu, "Microphase separation and molecular conformation of AB2 miktoarm star copolymers by dissipative particle dynamics," Polymer, vol. 48, pp. 4537-4546, 2007.
[17] C. Soto-Figueroa, et al., "Self-Organization Process of Ordered Structures in Linear and Star Poly(styrene)−Poly(isoprene) Block Copolymers: Gaussian Models and Mesoscopic Parameters of Polymeric Systems," The Journal of Physical Chemistry B, vol. 111, pp. 11756-11764, 2007.
[18] L. Chang, et al., "Fast Probabilistic Ranking under x-Relation Model," 2009.
[19] P. Espanol and P. Warren, "Statistical mechanics of dissipative particle dynamics," EPL (Europhysics Letters), vol. 30, p. 191, 1995.
[20] P. Flory, "Thermodynamics of high polymer solutions," The Journal of Chemical Physics, vol. 10, p. 51, 1942.
[21] M. Huggins, "Some Properties of Solutions of Long-chain Compounds," The Journal of Physical Chemistry, vol. 46, pp. 151-158, 1942.
[22] M. Rodriguez-Hidalgo, et al., "Mesoscopic study of cylindrical phases of poly (styrene)-poly (isoprene) copolymer: Order-order phase transitions by temperature control," Polymer, vol. 50, pp. 4596-4601, 2009.
[23] C. s. Soto-Figueroa, et al., "Dissipative Particle Dynamics Study of Order−Order Phase Transition of BCC, HPC, OBDD, and LAM Structures of the Poly(styrene)−Poly(isoprene) Diblock Copolymer," Macromolecules, vol. 41, pp. 3297-3304, 2008.
[24] R. Groot and K. Rabone, "Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants," Biophysical Journal, vol. 81, pp. 725-736, 2001.
[25] X. Li, et al., "Microphase separation of diblock copolymer poly (styrene-b-isoprene): A dissipative particle dynamics simulation study," The Journal of Chemical Physics, vol. 130, p. 074908, 2009.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *