帳號:guest(3.22.171.136)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林瑋寧
作者(外文):Lin, Wei-Ning
論文名稱(中文):碳奈米管/奈米石墨烯片/環氧樹脂複合材料之製備及其性質之研究
論文名稱(外文):Preparation and characterization of carbon nanotubes/graphene/epoxy composite
指導教授(中文):馬振基
指導教授(外文):Ma, Chen-Chi M.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9732551
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:231
中文關鍵詞:奈米石墨烯片碳奈米管複合材料
外文關鍵詞:graphenecarbon nanotubescomposite
相關次數:
  • 推薦推薦:1
  • 點閱點閱:550
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究旨在利用奈米石墨烯片添加至環氧樹脂基材中作為補強材料,由於奈米石墨烯片在基材中容易有聚集問題,故本研究利用碳奈米管的添加,改善奈米石墨烯片之分散性,並利用一維碳奈米管及二維奈米石墨烯片之協成效果達到最佳的補強結構,大幅提高環氧樹脂複材之機械性質。
本研究主要分成三部分:
第一部份主要研究碳奈米管的表面處理,以自由基反應法來達到改質效果,其分為兩步驟:
1. 利用自由基反應法改質碳奈米管,將含有環氧基的glycidylmethacrylate(GMA)接枝聚合在碳奈米管上,此方法可避免如利用氧化法對碳管本身的破壞,使碳奈米管表面仍然保持其完整石墨結構。
2. 接枝含雙胺的單體(Jeffamine® Poly(oxyproplene), POP-400),探討POP-400對於碳奈米管所形成的立體結構對分散性及反應性的影響,並命名改質後之碳奈米管為GD400-MWCNTs。
藉由拉曼光譜(Raman Spectrum)、高解析電子能譜儀(XPS)、紅外線光譜儀(FT-IR) 進行定性分析,並以TGA作定量分析。
由Raman光譜的分析可知未改質的碳奈米管有最低的D band/G band積分面積相對比值(1.08),因其結構性最為完整,而經過自由基改質碳奈米管其碳奈米管表面的石墨結構會由於自由基反應而造成部份開環,故使得D band/G band積分面積上升至1.16,但無明顯大幅上升表示自由基改質除了可以有效改質碳奈米管,更可以保持碳奈米管結構之完整性。利用XPS碳譜圖分析改質後的Jeffamine® POP-400-g-GMA-MWCNTs (GD400-MWCNTs) 比改質前的碳奈米管多出四個訊號峰,分別在285.60 eV處有C-NH2的特徵峰,286.65 eV處有C-O-C的特徵峰,286.86 eV處有C-OH的特徵峰,288.00 eV處有O-C=O的特徵峰,證明POP-400已成功接枝於碳奈米管表面上。
第二部份是將奈米石墨烯片進行氧化還原反應以降低其層數,以達到增加其表面積進而提昇複材之機械性質,藉由拉曼光譜、高解析電子能譜儀、X-射線繞射儀進行定性分析,並以原子力顯微鏡、SEM進行形態學觀察。
根據Hummers method,Graphite Nano Sheet(GNS)經由氧化脫層後形成Graphene Oxide(GO)。Graphene Oxide上含有大量含氧官能基可以提供良好的分散性及化學活性點。而從XRD可觀察到其002結晶面的層間距離從Graphite Nano Sheet的3.4 Å,撐開至Graphene Oxide(GO)的7.3 Å,然而其石墨結構卻有不完整。為了回復材料之石墨結構完整性,利用化學還原法將Graphene Oxide還原為Graphene Sheet,由Raman及XPS可以分析材料的石墨結構比例及其表面的元素成份。從Raman及XPS之分析結果證實經由化學還原法可以將Graphene Oxide 還原為Graphene Sheet(GS)。從FE-SEM可以觀察到GNS、GO及GS的型態結構,經過還原反應後之GS與傳統材料的碳黑及石墨不同,呈現皺摺且多孔結構。本研究主要是利用GNS、GO及GS添加至環氧樹脂基材當中,並利用碳奈米管提高分散性,以提昇高分子複合材料之機械性質。
第三部分則是將Pristine-MWCNTs、GD400-MWCNTs及GNS、GO、GS進行混摻並加至環氧樹脂基材當中,並且探討其對於機械性質上的影響,研究結果如下:
1. 將含0.5 phr、1.0 phr及2.0 phr 之Pristine-MWCNTs/GNS與epoxy進行混掺並製備Pristine-MWCNTs/GNS/Epoxy複合材料,發現添加低含量0.5 phr之Pristine-MWCNTs時可得最佳機械性質,因為Pristine-MWCNTs/GNS含量過高時會產生聚集現象,造成應立集中點無法有效傳遞應力,使得機械性質呈現下降的趨勢。擁有Pristine-MWCNTs/GNS之混成比例為10/90 wt%(wt %),拉伸模數由2 phr之Pristine-MWCNTs/GNS/Epoxy複合材料的2920 MPa提昇至0.5 phr的3381 MPa。
2. Pristine-MWCNTs/GNS/Epoxy複合材料在Pristine-MWCNTs /GNS之混成比例為10/90 wt%(wt %)下其拉伸模數、拉伸強度及最大伸長量皆較兩成份之Pristine-MWCNTs/Epoxy複合材料及GNS/Epoxy複合材料佳,由Pristine-MWCNTs/Epoxy及GNS/Epoxy的3087 MPa、51.99 MPa、3%及3361 MPa、51.08 MPa、2.9%提昇至Pristine-MWCNTs /GNS之混成比例為10/90 wt%(wt %)的3381 MPa、55.02 MPa、3.5%。這是由於添加少量碳奈米管至材料中,碳奈米管能夠提供立體障礙以減少奈米石墨烯片堆疊之現象,使得奈米石墨烯片聚集的現象得以改善,故能提昇其複材之機械性質。
3. 將Pristine-MWCNTs/GNS/Epoxy複合材料及GD400-MWCNTs /GNS/Epoxy複合材料兩系統進行拉伸測試,研究發現碳奈米管經過自由基改質後,其接枝上的POP-400含有胺基可與環氧樹脂的環氧基進行開環反應,使得GD400- MWCNTs與基材間相容性及黏著性問題改善,且GD400-MWCNTs與奈米石墨烯片之間的作用力使得GD400- MWCNTs附著於奈米石墨烯片表面上,故一併將奈米石墨烯片嵌入至基材當中,增加奈米石墨烯片及基材間之相容性及黏著性,以提昇其拉伸強度及最大伸長量。但含0.5 phr之Pristine-MWCNTs/GNS/Epoxy分散性較佳,GD400- MWCNTs所接枝的POP-400影響交聯度之效果勝過其分散效果,故拉伸模數無法提昇。
4. 將GD400-MWCNTs/GNS/Epoxy複合材料、GD400-MWCNTs /GO/Epoxy複合材料及GD400-MWCNTs/GS/Epoxy複合材料三個系統進行比較,發現GO材料由於氧化脫層效果,造成層數減少且帶有含氧官能基,故能提昇拉伸強度(由GD400-MWCNTs/GNS/Epoxy的61.52 MPa提昇至GD400- MWCNTs/GS/Epoxy的67.59 MPa)及最大伸長量(由GD400-MWCNTs/GNS/Epoxy的3.9 %提昇至GD400-MWCNTs /GS/Epoxy的4 %),但在硬化過程因升溫造成含氧官能基部份氣化而造成材料有孔洞之產生,造成拉伸模數無法提昇現象。GS之材料其層數經氧化還原後較GNS少,且有材料有皺摺型態,能與高分子基材形成交互連鎖 (interlocking),使應力可以有效傳遞以改善機械性質,但僅添加GS時當其添加量較高會造成分散性降低之情形故無法提昇其拉伸模數,而在於GD400-MWCNTs/GS之混成比例為10/90 wt%時,由於GD400-MWCNTs之少量添加能改善GS於Epoxy中之分散性以達到最佳機械性質效果。
熱機械性質方面分為三個參數討論,分別是玻璃轉移溫度(Tg)、玻璃態的熱膨脹係數(CTEα1 )及橡膠態的熱膨脹係數(CTEα2 ):
1. Pristine-MWCNTs/GNS/Epoxy複合材料在Pristine-MWCNTs /GNS之混成比例為10/90 wt%(wt %)下可得最高的玻璃轉移溫度及最低玻璃態的熱膨脹係數及橡膠態的熱膨脹係數,分別為52℃, 81 ppm/℃及250 ppm/℃。這是由於添加少量碳奈米管至材料中,碳奈米管能夠提供立體障礙以減少奈米石墨烯片堆疊之現象,使得奈米石墨烯片與高分子間的接觸面積上升,故能提昇其複材之機械性質。
2. 將GD400-MWCNTs/GNS/Epoxy複合材料系統進行TMA測試,在GD400-MWCNTs/GNS之混成比例為10/90 wt%(wt %)下其玻璃轉移溫度、玻璃態的熱膨脹係數及橡膠態的熱膨脹係數分別為52.69℃, 80.22 ppm/℃及236.2 ppm/℃,玻璃轉移溫度比純樹脂的42.99℃高出22.56 %,而玻璃態的熱膨脹係數及橡膠態的熱膨脹係數分別比純樹脂的90.2 ppm/℃及262.1 ppm/℃降低11.06 % 及9.88 %;由於改質的碳管帶有含氨官能基,故能提高與基材之間之界面相容性,提昇GD400-MWCNTs/GNS/Epoxy複合材料的熱穩定性。
3. 將GD400-MWCNTs/GO/Epoxy複合材料系統進行TMA測試,在GD400-MWCNTs/GO之混成比例為10/90 wt%(wt %)下其玻璃轉移溫度、玻璃態的熱膨脹係數及橡膠態的熱膨脹係數分別為54.41℃, 79.36 ppm/℃及246.5 ppm/℃,玻璃轉移溫度比純樹脂的42.99℃高出26.56 %,而玻璃態的熱膨脹係數及橡膠態的熱膨脹係數分別比純樹脂的90.2 ppm/℃及262.1 ppm/℃降低12.02 % 及5.95 %;由於經過氧化反應後的GO帶有含氧官能基且層數變少,故能提昇其熱性質,但由於經過加熱硬化過程GO被部份還原,其帶有之含氧官能基部份被氣化造成複材之孔洞形成,故橡膠態的熱膨脹係數比GD400-MWCNTs /GNS/Epoxy複合材料系統高。
4. 將GD400-MWCNTs/GS/Epoxy複合材料系統進行TMA測試,在GD400-MWCNTs/GS之混成比例為10/90 wt%(wt %)下其玻璃轉移溫度、玻璃態的熱膨脹係數及橡膠態的熱膨脹係數分別為56.9℃, 70.13 ppm/℃及225.5 ppm/℃,玻璃轉移溫度比純樹脂的42.99℃高出26.56 %,而玻璃態的熱膨脹係數及橡膠態的熱膨脹係數分別比純樹脂的90.2 ppm/℃及262.1 ppm/℃降低22.25% 及13.96 %;還原後之GS具有皺摺型態,能夠與環氧樹脂的高分子鏈更緊密結合,界面作用力因此提高許多,故能夠大幅提昇GD400-MWCNTs/GS/Epoxy複合材料系統的熱穩定性。
綜合以上結果可知,GD400-MWCNTs/GNS/Epoxy複合材料能達到最佳機械性質,其拉伸模數、拉伸強度及最大伸長量分別為3631 MPa,9.32 MPa及3.9 %,相對於純環氧樹脂的2642 MPa 47.65 MPa 2.6 %分別提昇 37.22 %,,45.45 %及 50 %。
本研究利用改質後之碳奈米管可幫助奈米石墨烯片的分散,使一維碳奈米管及二維奈米石墨烯片之協成效果達到最佳的補強結構,將奈米碳材於基材中能夠發揮最佳補強效果,大幅改善其機械性質。
The objectives of this research are the preparation and characterization of Multi-Walled Carbon NanoTubes (MWCNTs)/Graphite Nanosheet (GNS) /Epoxy hybrid composites. There are three parts in this study.
The first part of this research is the surface treatment of multi-walled carbon nanotubes (MWCNTs) by free radical reaction method, which is divided into two steps:
1. At first, the functionalized MWCNTs were prepared via free radical reaction with glycidylmethacrylate(GMA), which contains the epoxy group for polymerization on MWCNTs.
2. After GMA was polymerized on MWCNTs surface, Jeffamine® Jeffamine® Poly(oxyproplene)(POP-400) was grafted on GMA, which was assigned as GD400-MWCNTs.
GD400-MWCNTs were analyzed by Raman spectrometer, X-ray photoelectron (XPS), Fourier transform infrared spectrometer (FT-IR) and thermogravimetric analysis (TGA). The morphology of GD400- MWCNTs were observed by Transmission electron microscope (TEM).
The ID/IG area ratio of prinstine-MWCNTs and GD400-MWCNTs, are 1.08 and 1.16, respectively. The ID/IG values of GD400-MWCNTs indicate this modification will functionalize MWCNTs with slightly damage on the structure of MWCNTs. The characteristic absorption peaks of GD400-MWCNTs are more than that of prinstine-MWCNTs. There are characteristic peaks appeared, the peak at 285.60 eV corresponded to C-NH2, at 286.65 eV corresponded to C-O-C, on 286.86 eV corresponded to C-OH and at 288.00 eV corresponded to O-C=O, these peaks confirmed MWCNTs were successfully functionalized.
The second part of this research is the redox reaction on Graphite Nano Sheet(GNS) that can reduce the number of layers of GNS, and increase their surface area to enhance the mechanical properties of composites. Modified GNS was analyzed by Raman spectrometer, X-ray photoelectron (XPS) and X-ray (XRD). The morphology of Modified GNS was observed by SEM and AFM.
The Graphite Nano Sheet was exfoliated to form Graphene Oxide by using a modified Hummers method. The high density of oxygen functionalities on graphene oxide can provide chemical modified potentials and good dispersibility. XRD was used to observe the interlayer distance of graphite 002 plane, which indicated the that d-spacing of exfoliated Graphene Oxide changes from 3.4 Å to 7.3 Å. However, the Graphene Oxide possesses poor physical properties due to poor graphitic structure. In order to restore the graphitic structure of Graphene Oxide(GO), the chemical reduction had been used to reduce the Graphene Oxide(GO). The Raman and XPS were used to investigate the quality of graphitic structure and surface chemical composition of graphene-based materials. The results of Raman and XPS indicate that Graphene Sheet can be reduced effectively by chemical reduction. The FE-SEM was used to observe the surface morphology of GNS, GO and GS. The surfaces of GS exhibit typically crumpled and porous architectures which are different from carbon black and graphite. In this study, GNS, GO and GS were added into polymer matrix to investigate their effect on the mechanical properties of the polymer composites.
The third part of this research is the preparation and characterization of the Pristine-MWCNTs/GNS/epoxy, GD400-MWCNTs/GNS/epoxy, GD400-MWCNTs/GO/epoxy and GD400-MWCNTs/GS/epoxy hybrid composites.
From the tensile properties study, the following results were obtained:
1. When the Pristine-MWCNTs/GNS/Epoxy hybrid composites were prepared with 0.5 phr, 1.0 phr and 2.0 phr MWCNTs/GNS, it was found the best mechanical properties can be obtained with the lowest MWCNTs/GNS content (0.5 phr).Since the high nano filler content will cause aggregation and reduce its mechanical properties.
2. The hybrid composite of Pristine-MWCNTs/GNS with the ratio of 10/90 wt%(wt %) shows the best tensile modulus, tensile strength and elongation, which were 3361 MPa, 51 MPa and 2.9 %, respectively, and exhibit significant improvement comparing with neat epoxy (increase from 2646 MPa, 47.65 MPa and 2.6 %, the enhancement is 27.02 %, 6.93 % and 11.54 %, respectively.) Since adding carbon nanotubes can improve the dispersibility of GNS in epoxy matrix.
3. The tensile modulus, tensile strength and elongation of GD400- MWCNTs/GNS/Epoxy hybrid composite with MWCNTs/GNS ratio of 10/90 wt% were 3361 MPa, 61.52 MPa and 3.9 %, respectively (the enhancement is 27.04 %, 29.09% and 50% respectively, comparing with those of neat epoxy.)
4. The tensile modulus, tensile strength and elongation of GD400- MWCNTs/GO/Epoxy hybrid composite with MWCNTs/GO ratio of 10/90 wt% were 2940 MPa, 67.59 MPa, 4 %, respectively (the enhancement is 11.11%, 41.82% and 53.85% respectively, comparing with those of neat epoxy.) The tensile modulus, tensile strength and elongation of GD400-MWCNTs/ GS /Epoxy hybrid composite in MWCNTs/ GS 10/90 wt% were 3631 MPa, 9.32 MPa, 3.9 %, respectively (the enhancement is 37.22 %, 45.45 % and 50 % respectively, comparing with those of neat epoxy.)
From the Glass Transition Temperature(Tg) study, the following results were obtained:
1. The hybrid composite of Pristine-MWCNTs/GNS with the ratio of 10/90 wt%(wt %) shows the highest Tg which was 52℃, respectively, and exhibit significant improvement comparing with neat epoxy (increase from 42.99 ℃, the enhancement is 20.96 %, respectively.) Since adding carbon nanotubes can improve the dispersibility of GNS in epoxy matrix.
2. The Tg of GD400- MWCNTs/GNS/Epoxy hybrid composite with MWCNTs/GNS ratio of 10/90 wt% was 52.69 ℃, respectively (the enhancement is 22.56%, comparing with those of neat epoxy.)
3. The Tg of GD400-MWCNTs/GO/Epoxy hybrid composite with MWCNTs/GO ratio of 10/90 wt% was 54.41 ℃, respectively (the enhancement is 26.56. %, respectively, comparing with those of neat epoxy.) The Tg of GD400-MWCNTs/GS/Epoxy hybrid composite in MWCNTs/ GS 10/90 wt% was 56.9℃, respectively (the enhancement is 32.36 %, respectively, comparing with those of neat epoxy.)
From the Coefficient of thermal expansion (CTEα1 and CTEα2) study, the following results were obtained:
1. The hybrid composite of Pristine-MWCNTs/GNS with the ratio of 10/90 wt%(wt %) shows the lowest CTEα1 and CTEα2, which were 81 ppm/℃and 240 ppm/℃, respectively, and exhibit significant improvement comparing with neat epoxy (decrease from 90.2 ppm/℃ and 262.1 ppm/℃, the enhancement are 10.20 % and 8.43 %, respectively.) Since adding carbon nanotubes can improve the dispersibility of GNS in epoxy matrix.
2. The CTEα1 and CTEα2 of GD400-MWCNTs/GNS/Epoxy hybrid composite with MWCNTs/GNS ratio of 10/90 wt% were 80.22 ppm/℃ and 236.2 ppm/℃, respectively (the diminution are 11.06 % and 9.88 %, comparing with those of neat epoxy.)
3. The CTEα1 and CTEα2 of GD400-MWCNTs/GO/Epoxy hybrid composite with MWCNTs/GO ratio of 10/90 wt% were 79.36 ppm/℃ and 246.5 ppm/℃, respectively (the diminution are 12.02% and 5.95 %, comparing with those of neat epoxy.) The Tg of GD400-MWCNTs/GS/Epoxy hybrid composite in MWCNTs/GS 10/90 wt% were 70.13 ppm/℃ and 225.5 ppm/℃, respectively (he diminution are 22.25 % and 13.96 %, respectively, comparing with those of neat epoxy.)
This study demonstrates a unique method to improve the mechanical properties of GNS, GO and GS filled epoxy composites via introducing one dimensional carbon nanotubes. Since long and tortuous MWCNTs can bridge the adjacent GNS, GO and GS and inhibit the face to face aggregation, resulting in a high contact area between 3-D hybrid architecture and polymer matrix. The tensile modulus, tensile strength and elongation of GD400-MWCNTs/ GS /Epoxy hybrid composite in MWCNTs/ GS 10/90 wt% were 3631 MPa, 9.32 MPa, 3.9 %, (the enhancement is 37.22 %, 45.45 %and 50 % respectively, comparing with those of neat epoxy.) Thus, minimizing the stacking effect and reducing aggregation of GNS, GO and GS are the most important issues to realize the potential of graphene-based composites.The 3-D hybrid architectures is a very important concept to improve reinforcing efficiency of graphene-base polymer composites.
摘要 I
ABSTRACT IX
謝誌 I
目錄 XVIII
圖目錄 XXIII
表目錄 XXXVIII

第一章 緒論 1
第二章 基礎理論與文獻回顧 5
2-1 環氧樹脂 5
2-1-1 環氧樹脂簡介 5
2-1-2 環氧樹脂的性能和特性 8
2-1-3 環氧樹脂的硬化機制 11
2-2 奈米材料 13
2-3 碳奈米管 16
2-3-1 碳奈米管的結構 16
2-3-2 碳奈米管的基本性質 21
2-3-3 碳奈米管的製備方法 25
2-3-4 碳奈米管的分散方法 26
2-4 碳奈米管/環氧樹脂奈米複合材料機械性質之文獻回顧 37
2-5 石墨烯(GRPHENE) 64
2-5-1 單層石墨烯 64
2-5-2 多層奈米奈米石墨烯片(Nano Graphene Platelets, NGP)[77][78] 66
2-5-3 製備方法 67
2-5-4 石墨烯的特性[105] 71
2-5-4 石墨烯奈米複合材料之文獻回顧 75
第三章 研究目的與內容 109
3-1 研究目的 109
3-2 研究內容 109
第四章 實驗方法 111
4-1 實驗藥品 111
4-2 實驗儀器設備 113
4-3 實驗流程圖 117
4-4 實驗步驟 118
4-4-1 Free Radical Polymerization法改質碳奈米管 118
4-4-2 GNS之氧化還原反應 120
4-4-3 MWCNTs/GNS/Epoxy複合材料之製備 120
4-5 測試方法 125
4-5-1 結構分析 125
4-5-2 形態學分析 129
4-5-3 熱性質分析 129
4-5-4 拉伸性質(Tensile properties) [100] 131
第五章 結果與討論 135
5-1 FREE RADICAL REACTION法改質碳奈米管之基本性質鑑定(GD400-MWCNT) 135
5-1-1 GD400-MWCNTs之Raman鑑定結果 135
5-1-2 GD400-MWCNTs之XPS(X-ray photoelectron spectroscopy)鑑定結果 137
5-1-3 GD400-MWCNTs之ATR (Attenuated Total Reflectance FT-IR) 鑑定結果 141
5-1-4 GD400-MWCNTs之TGA(Thermogravimetric analysis)分析結果 143
5-1-5 Free Radical Reaction法改質碳奈米管之TEM (Transmission Electron Microscope)形態學觀察結果 145
5-2 氧化還原GRAPHITE NANO SHEET之基本鑑定 147
5-2-1 Graphite Nano Sheet、Graphene Oxide及Graphene Sheet之Raman鑑定結果 147
5-2-2 Graphene oxide及Graphene Sheet之XPS(X-ray photoelectron spectroscopy)鑑定結果 148
5-2-3 Graphene oxide之X-射線繞射儀 (X-ray diffratometer, XRD)分析 153
5-2-4 Graphite Nano Sheet、Graphene Oxide及Graphene Sheet之形態學 155
5-2-5 Graphene oxide之原子力顯微鏡(Atomic Force Microscope, AFM)分析 158
5-3 PRISTINE-MWCNTS(OR GD400-MWCNTS)/ GRAPHITE NANO SHEET /EPOXY複合材料之機械性質研究 159
5-3-1 含1 phr Pristine-MWCNT/GNS的Epoxy複合材料之拉伸性質 159
5-3-2 不同MWCNTs/GNS含量之MWCNTs/GNS/Epoxy同對拉伸性質之探討 168
5-3-3 MWCNTs改質前後系統不同對拉伸性質之探討 174
5-4 GD400-MWCNTS/ GRAPHITE OXIDE /EPOXY複合材料之機械性質研究 179
5-5 GD400-MWCNTS/ GRAPHENE SHEET /EPOXY複合材料之機械性質研究 183
5-6 碳奈米管/奈米石墨烯片/環氧樹脂複合材料之SEM表面型態觀察 188
5-6-1 單一奈米粉體/環氧樹脂複合材料之SEM圖 188
5-6-2 MWCNTs/GNS/環氧樹脂複合材料之SEM圖 191
5-7 碳奈米管/奈米石墨烯片/環氧樹脂複合材料之熱性質研究 198
5-7-1 純碳奈米管/奈米石墨烯片/環氧樹脂複合材料之熱機械性質分析 198
5-7-2 GD400-MWCNTs/奈米石墨烯片/環氧樹脂複合材料之熱機械性質分析 錯誤! 尚未定義書籤。
第六章 結論 198
第七章 參考文獻 220
[1] 馬振基,「高分子複合材料(修訂版)-上冊」,華香園出版社,台北,2009.
[2] 楊士億, 國立清華大學化學工程學系論文, 馬振基教授指導, 2009.
[3] S Iijima. Helical microtubes of graphitic carbon. Nature; 56: 354, 1991.
[4] J Sandler, MSO Shaffer, T Prasse, W Bauhofer, K Schulte, AH. Windle. Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer; 40: 5967-71, 1999.
[5] S Iijima. and M. Endo.The predecessor. Carbon; 33(7): 869, 1995
[6] S Subramoney. Novel nanocarbons. Structure, properties, and potential applications. Advanced Materials;10(15):1157-71, 1998
[7] BI Yakobson and RE Smalley. Fullerene Nanotubes: C1,000,000 and Beyond. American Scientist; 85:324-30, 1997
[8] MMJ Treacy, TW Ebbesen, JM Gibson. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature; 381: 678, 1996.
[9] 阮韶銘,國立清華大學化學工程學系論文, 馬振基教授指導, 2008.
[10] 王春山,「環氧樹脂簡介與最近的發展(一)~(四) 」,化工技術,第二卷,第十期,第54頁,1994;第二卷,第十一期,第120頁 1994;第二卷,第十二期,第129頁,1994;第三卷,第一期,第166頁, 1995.
[11] 馬振基、趙珏著,「高分子複合材料下冊、製程、檢測與應用」,華香園出版社,台北, 2005.
[12] 梁麗娜,國立清華大學化學工程學系論文, 馬振基教授指導,2007.
[13] 楊子慧,國立清華大學化學工程學系論文,馬振基教授指導,2007.
[14] 蕭世明,「含磷/氮難燃高分子之製備與熱穩定性質」,國立中興大學碩士論文,2001.
[15] 陳平、王德中編著,「環氧樹脂及其應用」,化學工業出版社,北京,2004.
[16] C. C. Riccardi, and R. J. J. Williams, Journal of Applied Polymer Science; 32: 3445, 1986.
[17] 馬振基主編,「奈米材料科技原理與應用」,全華科技圖書股份有限公司, 台北, 2003.
[18] H. W. Kroto, J.R. Heath, S. C. O’Brien, R.F. Curl, R.E. Smalley. C60:Buckminsterfullerene Nature; 318: 162, 1985.
[19] T. W. Odom﹐J. L. Huang﹐P. Kim﹐C. M. Lieber﹐” Structure and electronic properties of carbon nanotubes ”J. Phys. Chem. B; 104: 2794, 2000.
[20] S Amelinckx et. al. Ele ctron diffraction and microscopy of nanotubes: 1475-7
[21] P. Ramirez, “Carbon Nanotubes for Science and Technology,” Bell Labs Technical Journal, 2005.
[22] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic-Structure of Chiral Graphene Tubules,” Appl. Phys. Lett.; 60: 2204–6, 1992.
[23] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, “Carbon Nanotubes—The Route Toward Applications,” Science; 297: 787–92, 2002.
[24] K. I. Tserpes and P. Papanikos Finite Element modeling of single-walled carbon nanotubes. Composites: Part B; 36(4): 468-77, 2005.
[25] A. L. Kalamkarov, A. V.Georgiades, Rokkam SK, Veedu VP, Ghasemi-Nejhad MN. Analytical and numerical techniques to predict carbon nanotubes properties. International Journal of Solids and Structures; 43(20): 6832-54, 2006.
[26] M. J.Treacy, T.W.Ebbesen, J.M.Gibson,”Exceptionally high Young's modulus observed for individual CNT”, Nature; 381 20, 1996.
[27] 成會明,「納米碳奈米管制備,結構,物性及應用」,化學工業出版社,北京,2002.
[28] T. W. Ebbesen, & P. M Ajayan,.,” Large-scale synthesis of carbon nanotubes”, Nature; 358: 220-22, 1992.
[29] E.W. Wong, P.E. Sheehan, and C.M. Lieber ,“Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes “,Science; 26, 1997.
[30] M. Terrones, W. K. Hsu, H. W. Kroto, D. R. M. Walton, “Nanotube : A Revolution in Materials Science and Electronics”, Topics in Current Chemistry;199, 1999.
[31] N. Krishnankutty, C. Park, N. M. Rodriguez, R. T. K. Baker, “Mechanical and thermal properties of carbon nanotubes”, Carbon ; 27: 925-30, 1995.
[32] A. Hirsch, O. Vostrowsky, Functionalization of carbon nanotubes, Top Curr Chem; 245: 193–237, 2005.
[33] E.T. Thostenson, Z. Ren, T.W. Chou, “Advances in the science and technology of carbon nanotubes and their composites”, Composites Science and Technology; 61: 1899–912, 2001.
[34] R. C. Haddon, U.S. Patent 6331262, 2001.
[35] Z. Shi, Y. Lian , X. Zhou , Z. Gu , Y. Zhang , S. Iijima , Q. Gong , H. Li and S. L. Zhang. Single-wall carbon nanotube colloids in polar solvents. Chemical Communications-Letchworth; 6: 461-2, 2000.
[36] M. Ree, K. Kim, S. H. Woo, H. Chang. Structure, chain orientation, and properties in thin films of aromatic polyimides with various chain rigidities. Journal of Applied Physics; 81: 698-708, 1997.
[37] B.C. Auman, T. L. Myers and D. P. Higley. Synthesis and characterization of polyimides based on new fluorinated 3,3'-diaminobiphenyls. Journal of polymer science part a: polymer chemistry; 35: 2441, 1997.
[38] J. G. Lavin, H. V. Samuelson. Single-wall carbon nanotube-polymer composites. U.S. Patent 6426134, 2002.
[39] T. V. Sreekumar, T. Liu, and S. Kumar, L. M. Ericson, R. H. Hauge, and R. E. Smalley. Single-Wall Carbon Nanotube Films. Chemistry of Materials; 15: 175-8, 2003.
[40] A. Hirsch, O. Vostrowsky, Functionalization of carbon nanotubes, Top Curr Chem, 245: 193–237, 2005.
[41] Y. M. Ying, R. K. Saini, F. Liang, A. K. Sadana, W. E. Bulleps, Functionaliaztion of Carbon Nanotubes by Free Radicals Organic Letters, 5, 1471, 2003.
[42] S. Qin, Grafting of Poly(4-vinylpyridine) to Single-Walled Carbon Nanotubes and Assembly of Multilayer Films, Macromolecules, 37, 9963-7, 2004.
[43] H. L. Wu, Molecular Mobility of Free-Radical-Functionalized Carbon-Nanotube/Siloxane/Poly(urea urethane)Nanocomposites,journal of Polymer Science: Part A: Polymer Chemistry, 43, 6084-94, 2003.
[44] M. Alvaro, Sidewall Functionalization of Single-Walled Carbon Nanotubes with Nitrile Imines. Electron Transfer from the Substituent to the Carbon Nanotube, J. Phys. Chem. B, 108, 12691-126, 2004.
[45] C. Friedel, J. M. Crafts.Compt. Rend. 84, 1392 & 1450, 1877
[46] J. B. Baek, C. B. Lyonsb, L. S. Tan, “Covalent modification of vapour-grown carbon nanofibers via direct Friedel–Crafts acylation in polyphosphoric acid “,J. Mater. Chem. 14 2052, 2004
[47] H. J. Lee, S. J. Oh, J. Y. Choi, J. W. Kim, J. Han, L. S. Tan, J. B. Baek,” In Situ Synthesis of Poly(ethylene terephthalate) (PET) in Ethylene Glycol Containing Terephthalic Acid and Functionalized Multiwalled Carbon Nanotubes (MWNTs) as an Approach to MWNT/PET “Nanocomposites Chem. Mater. 17 5057, 2005.
[48] Q. Fu, C. Lu, and J. Liu*, Selective Coating of Single Wall Carbon Nanotubes with Thin SiO2 Layer, Nano Lett. 2002, Vol. 2, No. 4
[49] T. Sainsbury and D. Fitzmaurice, Templated Assembly of Semiconductor and Insulator Nanoparticles at the Surface of Covalently Modified Multiwalled Carbon Nanotubes, Chem. Mater., 16: 3780-3790, 2004.
[50] T. Wang, X. Hu, X. Qu, and S. Dong, Noncovalent Functionalization of Multiwalled Carbon Nanotubes: Application in Hybrid Nanostructures, J. Phys. Chem. B, 110:6631-36, 2006.
[51] S. Guo, L. Huang and E. Wang, A novel hybrid nanostructure based on SiO2@carbon nanotube coaxial Nanocable, New J. Chem., , 31: 575–9, 2007.
[52] Q. Xiao, S. He, L. Liu, X. Guo, K. Shi, Z. Du, B. Zhang , Coating of multiwalled carbon nanotubes with crosslinked silicon-containing polymer, Composites Science and Technology, 68, 321–8, 2008.
[53] P. M. Ajayan, O.Stephan, C. Colliex, D. Trauth, Science, 265, 1994.
[54] X. Gong, J. Liu, S. Baskaran, R. D. Voise, and J. S. Young,Chem. Mater. 2000.
[55] A. Allaouia, S. Baia,b, H.M. Chengb, J.B. Baia, Mechanical and electrical properties of a MWNT/epoxy composites, Composites Science and Technology 62, 1993–98, 2002.
[56] J. Zhu, J. D. Kim, H. Peng, J. L. Margrave, Valery N. Khabashesku, and Enrique V. Barrera, Improving the Dispersion and Integration of Single-Walled Carbon Nanotubes in Epoxy Composites through Functionalization, Nanoletters; 3, 1107-13, 2003.
[57] Q. Li, M. Zaiser, V. Koutsos. Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent, phys. stat. sol. (a) 201, No. 13, R89– R91, 2004.
[58] Y. Breton, G. Desarmot, J.P. Salvetat, S. Delpeux, C. Sinturel, F. Beguin, S. Bonnamy, Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology, Carbon 42 1027–1030, 2004.
[59] H. Miyagawa, A. KMohanty, L. T. Drzal, M. Misra, Nanocomposites from biobased epoxy and single-wall carbon nanotubes: synthesis, and mechanical and thermophysical properties evaluation, Nanotechnology 16 118–124, 2005.
[60] R. G de Villoria, A. Miravete, J. Cuartero, A. Chiminelli, N. Tolosana. Mechanical properties of SWNT/epoxy composites using two different curing cycles. Composites: Part B; 37:273–7, 2006.
[61] J. A. Kim, D. G. Seong, T. J. Kang, J. R. Youn. Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon; 44:1898–905, 2006.
[62] N. Li, Y. Huang, X. He, H. Gao, Y. Ma, F. Li, Y. Chen and P. C. Eklund. Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites. Nano letters;6(6): 1141-5, 2006
[63] J. Wang, Z. Fang, A. Gu, L. Xu, F. Liu. Effect of Amino-Functionalization of Multi-walled Carbon Nanotubes on the Dispersion with Epoxy Resin Matrix. Journal of Applied Polymer Science,; 100: 97–104, 2006
[64] G. S. Zhuang, G. X. Sui, Z. S. Sun, R. Yang. Pseudoreinforcement Effect of Multiwalled Carbon Nanotubes in Epoxy Matrix Composites. Journal of Applied Polymer Science; 102:3664–72, 2006
[65] M. L. Sham, J. K. Kim. Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments. Carbon;44:768–77, 2006
[66] H. Chen, O. Jacobs, W. Wu, G. Rudiger, B. Schadel. Effect of dispersion method on tribological properties of carbon nanotube reinforced epoxy resin composites. Polymer Testing, doi:10.1016/j.polymertesting, 004, 2007
[67] J. Shen, W. Huang, L. Wu, Y. Hu, M. Ye. Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes Composites: Part A;38:1331–1336, 2007.
[68] J. Cho and I. M. Daniel. Reinforcement of carbon/epoxy composites with multi-wall carbon nanotubes and dispersion enhancing block copolymers. Scripta Materialia; 58: 533–536, 2008.
[69] L. Sun, G. L. Warren, J. Y. OReilly, W. N. Everett, S. M. Lee,D. Davis, D. Lagoudas, H. J. Sue. Mechanical properties of surface-functionalized SWCNT/epoxy composites. Carbon; 4 6:3 2 0 –3 2 8, 2008.
[70] K. Yang, M. Gu, Y. Guo, X. Pan, G. Mu. Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites, impress, Carbon; 47: 1723-37, 2009.
[71] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat Mater, vol. 6, pp. 183-91, 2007.
[72] A. Zhamu ” NGPs – an emerging class of nanomaterials” Reinforced Plastics, 2008.
[73] Angstron Materials “Angstron Introduces Low Cost Graphene Platelets” Nano werk, 2008.
[74] C. Lee, X. Wei, J. W. Kysar, J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene," Science; 321: 38 , 2008.
[75] X. Li “Highly conducting graphene sheets and Langmuir–Blodgett films,” Nature Nanotechnology; 3: 538, 2008.
[76] K. S. Novoselov, A. K. Geim, “Electric Field Effect in Atomically Thin Carbon Films,” Science; 306: 666-9 , 2004.
[77] 吳至彧,國立清華大學工程與系統科學系碩士論文, 2009.
[78] M. Crommie “A Phonon Floodgate in Monolayer Carbon: The first STM spectroscopy of graphene flakes yields new surprises,” Lawrence Berkeley National Laboratory, 2008.
[79] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in grapheme NATURE; 438, 197, 2005.
[80] S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim,“Giant intrinsic carrier mobilities in graphene and its bilayer, ”PHYS REV LETT 100, 016602 , 2008.
[81] ” Nano Graphene Platelets (NGP) ” READE
http://www.reade.com/resources/manufacturers-list/5249
[82] K. Kalaitzidou ”Mechanical properties and morphological characterization of exfoliated graphite–polypropylene nanocomposites” Composites: Part A; 38: 1675–82, 2007.
[83] J. Li. Materials Science and Engineering A 483–484 (2008) 660–663
[84] A. Yu. Enhanced Thermal Conductivity in a Hybrid Graphite Nanoplatelet – Carbon Nanotube Filler for Epoxy Composites. Adv. Mater. 2008, 20, 4740–4744
[85] A. V. Raghu ”Preparation and Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet Nanocomposites” Macromolecular Chemistry and Physics; 209: 2487-93, 2008.
[86] J. Liang. “Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites” Adv. Funct. Mater. 2009, 19, 2297–2302
[87] Y. Xu. “Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure”Carbon, 47; 3538-43 (2009)
[88] S. Wang. “Thermal Expansion of Graphene Composites” Macromolecules, 42; 5251–5255(2009)
[89] J. Liang ”Electromagnetic interference shielding of graphene/epoxy composites” Carbon; 47: 922-5, 2009.
[90] S. Ansari. ” Functionalized graphene sheet - Poly(vinylidene fluoride) conductive nanocomposites” Journal of Polymer Science Part B: Polymer Physics; 47: 888-97, 2009.
[91] X. Zhao. “Enhanced Mechanical Properties of Graphene-Based Poly(vinyl alcohol) Composites” Macromolecules XXXX, XXX, 000–000
[92] J. Yan. “Preparation of graphene nanosheet/carbon nanotube/ polyaniline composite as electrode material for supercapacitors” Journal of Power Sources 195 (2010) 3041–3045
[93] M. A. Rafiee. “Fracture and Fatigue in Graphene Nanocomposites” small 2010, 6, No. 2, 179–83
[94] M.S. Dresselhausa,, G. Dresselhaus, R. Saitoc, A. Joriod,” Raman spectroscopy of carbon nanotubes,” Physics Reports, 409 ,47–99, 2005.
[95] W. D. Callister, J.R.,” Fundamentals of Materials Science and Engineering: An Integrated Approach, 3rd Edition”, John Wiley & Sons, Inc., 2007.
[96] S. K. Nieman “PRINCIPLES OF INSTRUMENTAL ANALYSIS (5th)” ISBN, 1990.
[97] J. M. Laza “Thermal properties and fire behaviour of materials produced from curing mixed epoxy and phenolic resins” Fire Mater.; 32:281–292, 2008.
[98] 李育德、顏文義、莊祖煌,「聚合物物性」,高立圖書有限公司,台北,1995.
[99] 劉家銘,奈米科技網(http://nano.nchc.org.tw/main.php)
[100] http://only-perception.blogspot.com/2008/07/stm.html
[101] XG Sciences, Inc. ©
[102] 詹姆斯W. 魯賓遜著、王以誠議,「大學儀器分析學」,徐氏基金會出版,臺北,1987.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *