帳號:guest(3.142.135.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王偉儒
作者(外文):Wang, Wei-Ju
論文名稱(中文):以分子動力學探討鹽類離子與水團簇的結構與鍵結行為
論文名稱(外文):Studies on the Behavior and Structure of Water Cluster and Ion System by Molecular dynamics simulation
指導教授(中文):張榮語
指導教授(外文):Chang, Rong-Yeu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9732552
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:94
中文關鍵詞:Ewald sum離子水合分子動力模擬
外文關鍵詞:Ewald sumion hydrationmolecular dynamics simulation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:318
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
以往分子動力模擬對於有帶電粒子系統較不易處理,主要是因為靜電力的收斂緩慢,若強制使用截斷半徑則會對力的計算上產生相當大的誤差。所幸藉由Ewald sum來處理靜電力,可得到合理的計算結果。但是Ewald sum方程式複雜,因此須先得到正確的作用力處理式才能夠運用於分子動力模擬中。

本研究可分為三個部份:
I.首先推導出Ewald sum以得到正確的計算式,接著驗證Ewald sum程式
化過程無誤。
II.將成功得到的計算式運用於分子動力模擬-建立純水系統。
III.最後建立鹽類水溶液。

研究最後探討各種離子對與不同的濃度對於水分子間氫鍵的影響,結果發現離子對於水分子間氫鍵的破壞與離子的水合能力是成正比關係。
Because of the slow convergence of static electricity, a molecular dynamic simulated system for charged particles is difficult to handle. If we force to use the truncation radius, the calculation of forces will generate considerable errors. However, by using Ewald sum which deals with static electricity, we are entitled to get reasonable results. But, Ewald sum formula is too complex to use. The force should be gotten first, so the correct address type can be applied in molecular dynamic simulation.

The research can be divided into three parts:

I. Get the right formula by derived Ewald sum, then verify if the Ewald sum
program process is correct or not.

II. Apply the formula into molecular dynamics simulation - the established water
system.

III. Establish salt solution.

Finally, the research is discussing about the effect of hydrogen bonds between water molecules and ions in different concentrations. The result shows that the destruction of hydrogen bonds between water molecules and ions is proportional to hydration.
謝誌 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 V
表目錄 IX
符號表 XI
第一章 序論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 5
2.1 純水分子文獻回顧 5
2.2鹽類水溶液的文獻回顧 7
第三章 研究方法 9
3.1 分子動力學基本理論 9
3.1.1分子動力學的基本假設與模擬流程 9
3.1.2運動方程式的數值方法 12
3.1.3週期性邊界 14
3.2 分子勢能 17
3.2.1分子內作用力 17
3.2.2分子間作用力 18
3.3 系統的控制 20
3.4 程式加速方法 22
3.4.1.牛頓第三運動定律 22
3.4.2分子截斷半徑法 22
3.4.3.Verlet鄰近列表法(Neighbor list) 24
3.5 性質統計 25
第四章 水分子勢能介紹 31
4.1水分子勢能介紹 31
4.2靜電力的介紹 35
4.2.1 截斷勢能的介紹 36
4.2.2 Ewald sum的介紹 38
第五章 Ewald sum驗證與模擬系統 42
5.1Ewald sum驗證 42
5.1.1 Ewald sum 數學式之驗證 42
5.1.2Ewald sum於多粒子系統的驗證 45
5.2模擬系統 47
5.2.1純水系統 47
5.2.3 鹽類水溶液系統 49
第六章 結果與討論 51
6.1 Ewald sum簡單系統驗證 51
6.2 純水系統 57
6.2.1.SPC/Fw勢能模型之分子結構 57
6.2.2 SPC/Fw模型平衡鍵長與結構 60
6.3鹽類水溶液系統 63
6.3.1單離子系統之結構性質 63
6.3.2多離子系統對氫鍵影響 73
第七章 結論與未來展望 79
7.1結論 79
7.2未來展望 81
附錄A 82
附錄B 89
參考文獻 90
1. Callister, W.D., materials science and engineering: an introduction. 2006: John Wiley & Sons,Inc.
2. Irving, J.H. and J.G. Kirkwood, The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics. J. Chem. Phys., 1950. 18: p. 817-829.
3. Alder, B.J. and T.E. Wainwright, Studies in Molecular Dynamics. I. General Method. J. Chem. Phys., 1959. 31: p. 459-466.
4. Alder, B.J. and T.E. Wainwright, Phase Transition for a Hard Sphere System. J. Chem. Phys., 1957. 27: p. 1208-1209.
5. A.Rahman, Correlations in the Motion of Atoms in Liquid Argon. Phys.Rev, 1964. 136: p. A401-A405.
6. A.Rahman and F.H. Stillinger, Improved simulation of liquid water by molecular dynamics. J. Chem. Phys., 1974. 64: p. 1545-1557.
7. Alejandre, J., D.J. Tildesley, and G.A. Chapela, Molecular dynamics simulation of the orthobaric densities and surface tension of water. JOURNAL OF CHEMICAL PHYSICS, 1995. 102: p. 4574-4583.
8. Liew, C.C., H. Inomata, and K. Arai, Flexible molecular models for molecular dynamics study of near and supercritical water. Fluid Phase Equilibria, 1998. 144: p. 287-298.
9. Matsumoto, M., S. Saito, and I. Ohmine, Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. NATURE, 2002. 416: p. 409-413.
10. Yang, T.H. and C. Pan, Molecular dynamics simulation of a thin water layer evaporation and evaporation coefficient. International Journal of Heat and Mass Transfer, 2005. 48: p. 3516-3526.
11. Nquyen, H.L. and S.A.Adelman, Studies of solvated ion motion : Molecular dynamics results for dilute aqueous solutions of alkali and halide ions. J. Chem. Phys, 1984. 81: p. 4564-4573.
12. Chandrasekhar, J., D.C. Spellmeyer, and W.L. Jorgensen, Energy component analysis for dilute aqueous solutions of lithium(1+), sodium(1+), fluoride(1-), and chloride(1-) ions. J. Am. Chem. Soc., 1984. 106(4): p. 903-910.
13. Wilson, M.A., A. Pohorille, and L.R. Pratt, Molecular dynamics test of the Brownian description of Na+ motion in water. J. Chem. Phys., 1985. 83: p. 5832-5838.
14. Caillol, J.M., D. Levesque, and J.J. Weis, Theoretical calculation of ionic solution properties. J. Chem. Phys., 1986. 85: p. 6645-6657.
15. Straatsma, T.P., H.J.C. Berendsen, and a.J.P.M. Postma, Free energy of hydrophobic hydration: A molecular dynamics study of noble gases in water. J. Chem. Phys., 1986. 85: p. 6720-6727.
16. Lee, S.H. and J.C. Rasaiah, Molecular Dynamics Simulation of Ion Mobility. 2. Alkali Metal and Halide Ions Using
the SPC/E Model for Water at 25 °C. J. Phys. Chem, 1996. 100: p.1420-1425.
17. White, J.A., et al., The solvation of Na+ in water: First-principles simulations. JOURNAL OF CHEMICAL PHYSICS, 2000. 113: p. 4668-4673.
18. Gua`rdia, E., et al., A molecular dynamics simulation study of hydrogen bonding in aqueous ionic solutions. Journal of Molecular Liquids, 2005. 117: p. 63-67.
19. Du, H., J.C. Rasaiah, and J.D. Miller, Structural and Dynamic Properties of Concentrated Alkali Halide Solutions: A Molecular Dynamics Simulation Study. J. Phys. Chem. B, 2007. 111: p. 209-217.
20. Gu, B., et al., The solvation of NaCl in model water with different hydrogen bond strength. THE JOURNAL OF CHEMICAL PHYSICS, 2008. 129: p. 184505.
21. J.H.Haile, Molecular Dynamics Simulation. 1991.
22. Koyama, A., T. Yamamoto, and K.F.a.Y. Miyamoto, Molecular dynamics studies on local ordering in amorphous polyethylene. JOURNAL OF CHEMICAL PHYSICS, 2001. 115: p. 560-566.
23. W.G.Hovver, canonical dynamics:Equilibrium phase-space distributions. Physical Review A, 1985. 31: p. 1695.
24. S.Nose, A unified formulation of the constant temperature molecular dynamics methods. J.Chem.Phys., 1984. 81: p. 511.
25. L.Verlet, Computer "experiments" on classical fluids. I.Thermodynamical properties of Lennard-Jones molecules. Phys.Rev, 1967. 159: p. 98.
26. Hanasaki, I. and A. Nakatani, Hydrogen bond dynamics and microscopic structure of confined water inside carbon nanotubes
THE JOURNAL OF CHEMICAL PHYSICS, 2006. 124: p. 174714.
27. Stanley, H.E. and J. Teixeira, Interpretation of the unusual behavior of H2O and D2O at low temperatures: Tests of a percolation model. J. Chern. Phys., 1980. 73: p. 3404-3422.
28. Zhou, J., et al., Molecular dynamics study on ionic hydration. Fluid Phase Equilibria, 2002. 194-197: p. 257-270.
29. H.J.C.Berendsen, et al., INTERACTIONMODELSFORWATERINRELATIONTOPROTEINHYDRATION. IntermolecularForces, 1981(331-342).
30. Berendsen, H.J.C., J.R. Grigera, and T.P. Straatsma, The missing term in effective pair potentials. J. Phys. Chem. , 1987. 91: p. 6269-6271.
31. Jorgensen, W.L., et al., Comparison of simple potential functions for simulating liquid water. J. Chem. Phys., 1983. 79: p. 926-935.
32. Levitt, M., et al., Calibration and Testing of a Water Model for Simulation of the Molecular Dynamics of Proteins and Nucleic Acids in Solution. J. Phys. Chem. B, 1997. 101: p. 5051-5061.
33. Jorgensen, W.L. and J.D. Madura, Quantum and statistical mechanical studies of liquids. 25. Solvation and conformation of methanol in water. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1983. 105: p. 1407-1413.
34. Mahoney, M.W. and W.L. Jorgensen, A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions. J. Chem. Phys., 2000. 112: p. 8910-8922.
35. Rick, S.W., S.J. Stuart, and B.J. Berne, Dynamical fluctuating charge force fields: Application to liquid water. J. Chem. Phys. , 1994. 101(7): p. 6141-6156.
36. Caldwell, J., L.X. Dang, and P.A. Kollman, Implementation of nonadditive intermolecular potentials by use of molecular dynamics: development of a water-water potential and water-ion cluster interactions. J . Am. Chem. Soc., 1990. 112: p. 9144-9147.
37. http://www1.lsbu.ac.uk/water/images/h2omodels.gif.
38. 卓志哲, 奈米噴流之分子動力學模擬. 2003, 國立清華大學.
39. Brünahl, J. and A.M. Grishin, Piezoelectric shear mode drop-on-demand inkjet actuator Sensors and Actuators A: Physical, 2002. 2002(3): p. 371-382.
40. Wu, Y., H.L. Tepper, and G.A. Voth, Flexible simple point-charge water model with improved liquid-state properties. THE JOURNAL OF CHEMICAL PHYSICS, 2006. 124: p. 024503.
41. STEINBACH, P.J. and B.R. BROOKS, New Spherical-Cutoff Methods for Long-Range Forces in Macromolecular Simulation. Journal of Computational Chemistry, 1994. 15: p. 667-683.
42. M.P.Allen and D.J.Tildesley, Computer Simulation of Liquids. 1991.
43. Kawata, M. and U. Nagashima, Particle mesh Ewald method for three-dimensional system with two-dimensional periodicity. Chemical Physics Letters, 2001. 340: p. 165-172.
44. D.C.Rapaport, The Art of Molecular Dynamics Simulation. 2003.
45. J.Sadus, R., Molecular Simulation of Fluids Theory,Algorithms and Object-Orientation. 1999.
46. Deserno, M. and C. Holm, How to mesh up Ewald sums. II. An accurate error estimate for the particle–particle–particle-mesh algorithm. JOURNAL OF CHEMICAL PHYSICS, 1998. 109: p. 7694-7701.
47. Deserno, M. and C. Holm, How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle mesh routines. JOURNAL OF CHEMICAL PHYSICS, 1998. 109: p. 7678-7693.
48. Bro´dka, A., Optical parameter values of the Ewald method with electrostatic layer correction for Coulomb interactions in slab geometry. Journal of Molecular Structure, 2006. 792-793: p. 56-61.
49. http://www.martin.chaplin.btinternet.co.uk/molecule.html.
50. Yeh, I.-C. and M.L. Berkowitza, Ewald summation for systems with slab geometry. JOURNAL OF CHEMICAL PHYSICS, 1999. 111: p. 3155-3162.
51. Brooks, C.L., B.M. Pettitt, and M. Karplus, Structure and energetic effects of truncating long ranged interactions in ionic and polar fluids. J. Chem. Phys, 1985. 83: p. 5897-5908.
52. Chowdhuri, S. and A. Chandraa, Hydration structure and diffusion of ions in supercooled water: Ion size effects. JOURNAL OF CHEMICAL PHYSICS, 2003. 118: p. 9719-9725.
53. Alejandre, J. and J.-P. Hansen, Ions in water: From ion clustering to crystal nucleation. PHYSICAL REVIEW E, 2007. 76: p. 061505.
54. Dang, L.X., Solvation of the hydronium ion at the water liquid/vapor interface. JOURNAL OF CHEMICAL PHYSICS, 2003. 119: p. 6351-6353.
55. STRAUCH, H.J. and P.T. CUMMINGS, COMPUTER SIMULATION OF VAPOR-LIQUID EQUILIBRIUM IN MIXED SOLVENT ELECTROLYTE SOLUTIONS. Fluid Phase EquiEibria, 1993. 83: p. 213-222.
56. Eslami, H., A. Dargahi, and H. Behnejad, Molecular dynamics simulation of liquid–vapor phase equilibria in polar fluids. Chemical Physics Letters, 2009. 473: p. 66-71.
57. Raabe, G. and R.J. Sadus, Influence of bond flexibility on the vapor-liquid phase equilibria of water. THE JOURNAL OF CHEMICAL PHYSICS, 2007. 126: p. 044701.
58. Zou, Y., X. Huai, and L. Lin, Molecular dynamics simulation for homogeneous nucleation of water and liquid nitrogen in explosive boiling. Applied Thermal Engineering, 2010. 30: p. 859-863.
59. Carignano, M.A., P.B. Shepson, and I. Szleifer, Ions at the ice/vapor interface. Chemical Physics Letters, 2007. 436: p. 99-103.
60. 洪建超, 以分子動力學研究高分子溶液之結構性質與奈米噴流行為. 2008, 國立交通大學.
61. 陳長福, 以分子動力學模擬研究熱壓式奈米壓印系統的加工行為. 2008, 國立清華大學.
62. Rissland, P. and Y. Deng, Electrostatic force computation for bio-molecules on supercomputers with torus networks. Parallel Computing, 2007. 33: p. 116-123.
63. Schaeffer, R.D., A. Fersht, and V. Daggett, Combining experiment and simulation in protein folding: closing the gap for small model systems Current Opinion in Structural Biology, 2008. 18(1): p. 4-9.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *