帳號:guest(3.137.218.215)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林志賢
作者(外文):Lin, Chih-Hsien
論文名稱(中文):Fabrication of Metal Grid on Silicon-Based Solar Cell by Electrochemical Deposition and Microcontact Print
論文名稱(外文):利用電化學沉積和微米壓印法應用於矽晶太陽能電池上導線的製作
指導教授(中文):萬其超
王詠雲
指導教授(外文):Wan, Chi-Chao
Wang, Yung-Yun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9732554
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:164
中文關鍵詞:矽晶太陽能電池無電鍍鎳微米壓印金屬化電鍍銅
外文關鍵詞:silicon-based solar cellelectroless Nimicrocontact printmetallizationelectroplating Cu
相關次數:
  • 推薦推薦:0
  • 點閱點閱:117
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
This work presents a novel and low-cost printing technique to construct a three-layer (Pd/Ni/Cu) structure as front-side conductor of textured mono-crystalline silicon solar cells. The technique involves microcontact printing and electrochemical deposition. Electrochemical deposition including electroless Ni and electroplated Cu offers an inexpensive method in contrast to the conventional silver-paste. The first step of this technique was activation by Pd nanoparticles. The Pd nanoparticles with average particle size about 2.65 nm were then mixed with organic solvent to prepare Pd ink. Then we imprinted Pd ink on the front side of solar cell by microcontact printing, which could print fine-lines of less than 60 μm width. The second layer is electroless nickel providing low contact resistance and good mechanical adhesion. The third layer is electrodeposited Cu to increase the line conductivity. X-ray Diffraction (XRD) technique, Secondary Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS) were employed to detect the presence of nickel-silicides phase and the thickness of nickel-silicides phase after annealing. Moreover, the depth profile of metal contact was determined by Secondary Ion Mass Spectrometry (SIMS) and Electron probe X-ray Microanalyzer (EPMA). Finally, the line conductivity of three layer structure is lower than silver paste, and this new scheme has proven to be workable and may become an alternative approach for surface metallization on solar cell.
Table of Contents
Abstract
Table of Contents……………………………………………………….Ⅰ
List of Figures…………………………………………………………..Ⅴ
List of Tables……………………………………………………………Ⅶ
Chapter 1 Introduction ..................................... 1
Chapter 2 Literature Review ........................... 4
2-1 Photovoltaic effect by solar cell ........................................................................ 4
2-2 Physical and technological efficiency limitation ........................................ 6
2-2.1 optical losses ............................................................................................................ 6
2-2.2 Recombination losses ............................................................................................... 9
Radiative recombination ........................................................................ 9
Auger recombination ............................................................................. 9
Recombination through impurity centers and crystal defects in the bulk.............................................................................................................. 10
Recombination at the surface ............................................................... 10
2-2.3 Electrical losses ..................................................................................................... 10
2-3 Metallization on front-side silicon-based solar cell ................................ 14
2-3.1 Screen printing ....................................................................................................... 15
The metallization process by screen printing....................................... 15
Metal contact formation process by screen-printed silver paste .......... 17
All possible current paths for plated contacts ...................................... 24
2-3.2 Photolithographical with evaporation or immersion ............................................. 26
2-3.3 Laser irradiation .................................................................................................... 27
2-3.4 Ink-jet printing ....................................................................................................... 30
VI
Nanoparticles ink ................................................................................. 31
Stabilization of nanoparticle inks ......................................................... 32
The PVP protective mechanism for nanoparticles ............................... 34
Synthesis Palladium Particles via PVP ................................................ 35
Synthesis Ag/Pd nanoparticles via PVP ............................................... 36
2-2.5 Microcontact print ................................................................................................. 38
Stamp mold formation via different material ....................................... 39
Different imprint methods .................................................................... 42
The transfer mechanisms of hydrophilic stamp and hydrophobic stamp.............................................................................................................. 44
2-4 Ni/Cu metallization .............................................................................................. 46
2-4.1 NiP thin film ........................................................................................................... 47
2-4.2 Efficiency improvement .......................................................................................... 48
2-5 Nickel silicide ......................................................................................................... 49
2-6 Copper electroplating........................................................................................... 54
Chapter 3 Experimental Sections ................ 58
3-1 Materials ................................................................................................................... 58
3-2 Experimental Instruments .................................................................................. 59
3-3 Principle and measurement of analytical methods .................................. 61
3-3.1 Ultraviolet-Visible Absorption Spectrometry (UV-vis) .......................................... 61
3-3.2 Scanning Electron Micorscope (SEM) ................................................................... 62
3-3.3 Transmission Electron Microscopy (TEM) ............................................................ 63
3-4 Stamp mold fabrication ....................................................................................... 64
3-5 Metallization process ........................................................................................... 66
3.4 Preparation of nanopartilces .............................................................................. 69
Chapter 4 Results and Discussion ............. 73
4-1 The essential properties of Pd, Ag/Pd and Cu/Pd nanoparticles ........ 73
4-1.1 Catalytic activity analysis ...................................................................................... 73
VII
ICP-MS quantitative analysis .............................................................. 73
Quartz Crystal Microbalance (QCM) analysis .................................... 74
4-1.2 Nanoparticles identification ~~ X-ray diffraction (XRD) ...................................... 77
4-1.3Particles size of nanoparticles ~~ TEM analysis .................................................... 79
4-2 The nanostructure of ink after annealing on silicon substrate ............. 81
4-2.1 The adsorption mechanism of ink on substrate ~ Contact angle analysis ............. 81
4-2.2 The thermal property study of PVP ........................................................................ 82
The trend of carbon residue ................................................................. 83
PVP thermal properties ~~ TGA analysis ............................................ 84
4-2.3 Morphology of particles on silicon substrate ~~ SEM and AFM analysis ............ 87
4-2.4 GIXRD and XPS analysis ....................................................................................... 93
4-3 Microcontact print ................................................................................................. 95
4-3.1 Mold ....................................................................................................................... 96
4-3.2 Thickness of ink-film on mold ................................................................................ 97
4-3.3 Diffusion problem................................................................................................... 99
4-4 The microstructure of NiP film on silicon substrate ............................. 100
4-4.1 The growing process of NiP film .......................................................................... 100
4-4.2 The topography and cross section of NiP film ..................................................... 103
Cross-section of NiP film ................................................................... 103
Topography of NiP film ..................................................................... 103
4-4.3 Sheet resistance v.s. different annealing temperatures ........................................ 107
4-5 Structure analysis of nickel silicide thin film .......................................... 108
4-5.1 The XRD ananlysis ............................................................................................... 108
4-5.2 XPS analysis ......................................................................................................... 113
4-5.3 FE-SEM and EDX analysis .................................................................................. 114
The study of nickel silicide ................................................................ 114
Nickel silicide observation for optimal annealing condition ............. 119
4-5.4 EPMA analysis ~ Depth profile ........................................................................... 121
Line scan ............................................................................................ 122
Mapping ............................................................................................. 125
VIII
4-5.5 Depth profile ~ SIMS analysis ............................................................................. 126
4-6 Cu film covered on full substrate by electroplating .............................. 128
4-6.1 Crystal orientation of copper deposit ~~ XRD analysis ...................................... 128
4-6.2 Sheet resistance of copper film ~~ Four point probe measurement .................... 131
4-6.3 Topography and cross section of copper film covered on full substrate ~~ SEM analysis .......................................................................................................................... 132
4.7 Finished product ................................................................................................... 134
4-7.1 Topography and Cross section of metal grids ~~ SEM analysis ......................... 134
4-7.2 I-V analysis ~ performance .................................................................................. 139
4-8 The mechanism of silicide formation ~ XPS analysis ......................... 143
4-8.1 Pd and Pd/Ag nanoparticles ................................................................................ 143
4-8.2 Depth profile of metal contact .............................................................................. 147
Chapter 5 Conclusions and Future Work 151
5.1 Conclusions ............................................................................................................ 151
Microcontact print .............................................................................. 151
Nanoparticles ..................................................................................... 151
NiP film and nickel silicide ................................................................ 152
Cu film and finished product ............................................................. 153
5.2 Future work ............................................................................................................ 154
1 New Concepts for Front Side Metallization of Industrial Silicon Solar Cells, Ansgar Mette (2007)
2 J. Horzel, K. de Clercq, O. Evrard, J. Szlufcik, L. Frisson, F. Duerinckx, J. Nijs, and R. Mertens, "Advantages of a new metallisation structure for the front side of solar cells", in Proceedings of the 13th European Photovoltaic Solar Energy Conference, Nice, France, pp. 1368-1373 (1995).
3 P. Narayanan Vinod, J Mater Sci: Mater Electron, 19, 594–601(2008)
4 P.N. Vinod, Communicated to Mater. Sci. Engg. B (February 2007)
5 A. Y. C. Yu, "Electron tunneling and contact resistance of metal-silicon contact barriers", Solid-State Electronics, vol. 13, pp. 239-247 (1970).
6 H. H. C. de Moor, A. W. Weeber, J. Hoornstra, and W. C. Sinke, "Fine-line screen printing for silicon solar cells", in Snowmass Conference, Colorado, USA, pp. 154-170 (1996).
7 G. Schubert, Dissertation Thesis, University Konstanz, Germany (2006).
156
8 G. Grupp, D. Biro, G. Emanuel, R. Preu, F. Schitthelm, and G. Willeke, "Analysis of silver thick-film contact formation on industrial silicon solar cells", in Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Orlando, Florida, pp. 1289-1292 (2005).
9 G. Grupp, D. Biro, G. Emanuel, R. Preu, F. Schitthelm, and G. Willeke,
"Analysis of silver thick-film contact formation on industrial silicon solar cells", in Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Orlando, Florida, pp. 1289-1292 (2005).
10 O. Gzowski, L. Murawski, and K. Trzebiatowski, "The surface conductivity of lead glasses", Journal of physics, vol. 15, pp. 1097-1101 (1982).
11 C. Ballif, S. Peters, and D. Borchert, "Local series resistance mapping of silicon solar cells by microwave photoconductivity decay measurements", Progress in Photovoltaics: Research and Applications, vol. 11, pp. 309-317 (2003).
12 K. Firor, S. J. Hogan, J. M. Barrett, and R. T. Coyle, "Series resistance associated with thick-film contacts to solar cells", in Proceedings of the 16th IEEE Photovoltaic Specialists Conference, San Diego, California, USA, pp. 824-827 (1982).
157
13 G. C. Cheek, R. P. Mertens, R. van Overstraeten, and L. Frisson, "Thickfilm metallization for solar cell applications", IEEE Transactions on Electron Devices, vol. ED-31, pp. 602-609 (1984).
14 C. Ballif, D. M. Huljic, G. Willeke, and A. Hessler-Wyser, "Silver thickfilm contacts on highly doped n-type silicon emitters: structural and electronic properties of the interface", Applied Physics Letters, vol. 82, pp. 1878-1880 (2003).
15 O. Gzowski, L. Murawski, and K. Trzebiatowski, "The surface conductivity of lead glasses", Journal of Physics D (Applied Physics), vol. 15, pp. 1097- 1101 (1982).
16 S. Kontermann, G. Emanuel, J. Benick, R. Preu, and G. Willeke, "Characterisation of silver thick-film contact formation on textured monocrystalline silicon solar cells", in Proceedings of the 21st European hotovoltaic Solar Energy Conference, Dresden, Germany, pp. 613-616 (2006).
17 E.J. Lee et al., Solar Energy Materials & Solar Cells, 74, 65–70 (2002).
18 Jens A. D. Jensen,a,b,z Per Møller,a Tim Bruton,c Nigel Mason,c Richard Russell,c John Hadley,d,* Peter Verhoeven,d and Alan
158
Matthewsone , Journal of The Electrochemical Society, 150, G49-G57 (2003)
19 Chun-Chieh Tseng, Colloids and Surfaces A: Physicochem. Eng. Aspects, 339, 206–210 (2009).
20 A. Kamyshny, M. Ben-Moshe, S. Aviezer, and S. Magdassi, "Ink-Jet Printing of Metallic Nanoparticles and Microemulsions", Macromolecular Rapid Communications, vol. 26, pp. 281-288 (2005).
21 SpecialChem(2007)online available:http://www.specialchem4coatings.com
22 B. Y. Tay and M. J. Edirsinghe, "Dispersion and stability of silver inks", Journal of Materials Science, vol. 37, pp. 4653-4661 (2004).
23 H. Hirai, N. Yakura, Y. Seta and S. Hodoshima, React. Funct. Polym., 37, 121 (1998)
24 Z. Zhang, B Zhao and L. Hu, Journal of solid state chemistry, 121, 105-110 (1996)
25 彭超, 碩士論文, 國立清華大學, 中華民國台灣 (2006).
26 藍若琳,碩士論文, 國立清華大學, 中華民國台灣(2007).
27 C. C. Yang, C. C. Wan, Y. Y. Wang, J. Colloid Interf. Sci., 279, 433- 439 (2004)
28 Chia-Cheng Yang, Chi-Chao Wan,* and Yung-Yun Wang, Journal of
159
The Electrochemical Society, 153, J27-31 (2006)
29 Chia-Cheng Yang, Chi-Chao Wan, Yung-Yun Wang, Journal of Colloid and Interface Science, 279, 433–439 (2004)
30 Y. M. Chung, H. Rhee, J. Colloid Interface Sci., 271, 131 (2004)
31 H. Hirai and N. Yakura, Polym. Adv. Technol., 12, 724 (2001)
32 Chien-Liang Lee,* Chi-Chao Wan,**,z and Yun-Yung Wang, Journal of The Electrochemical Society, 150, C125-C130 (2003)
33 L Jay Guo, J. Phys. D: Appl. Phys., 37, R123 (2004).
34 Ruben B. A. Sharpe, Dirk Burdinski, Jurriaan Huskens, Harold J. W. Zandvliet, David N. Reinhoudt, and Bene Poelsema, J. AM. CHEM. SOC., 127, 10344-10349 (2005)
35 Glasma¨star, K.; Gold, J.; Andersson, A.-S.; Sutherland, D. S.; Kasemo, B. Langmuir, 19, 5475-5483 (2003)
36 Hillborg, H.; Gedde, U. Polymer, 39, 1991-1998 (1998)
37 (a) Efimenko, K.; Wallace, W. E.; Genzer, J. J. Colloid Interface Sci., 254, 306-315 (2002). (b) Delamarche, E.; Bernard, A.; Schmid, H.; Michel, B.; Biebuyck, H. Science, 276, 779-781(1997).
38 K.-I. Nakamatsu, K. Tone, H. Namatsu, and S. Matsui, J. Vac. Sci. Technol. B, 24, 195 (2006).
160
39 F. J. Hou, in Proceedings of 2002 International Microprocesses and Nanotechnology Conference, The Japan Society of Applied Physics, p. 120 (2002)
40 Y. Y. Cheng, S. M. Jang, C. H. Yu, S. C. Sun, and M. S. Liang, in Proceedings of 1999 International Conference on Interconnect Technology, IEEE, pp. 193–195 (1999).
41 Ulf Bexell, Surface Characterisation Using ToFSIMS, AES and XPS of Silane Films and Organic Coatings Deposited on Metal Substrates, Acta University Upsaliensis, p.11 (2003).
42 K.Y. Lam1, Leio L.W. Chen2, Henry J.H. Chen3 and Fon-Shan Huang2, “The Study on Nanocontact Printing with Ink Aminosilane” (2006)
43 C. C. Yang and W. C. Chen, J. Mater. Chem., 12, 1138 (2002).
44 B. C. Chen, Y. K. Lai, F. H. Ko, C. T. Chou, and H. L. Chen, in Proceedings of 2001 International Microprocesses and Nanotechnology Conference, The Japan Society of Applied Physics, p. 168 (2001).
45 Ming-Tse Dai,a Kai-Yuen Lam,b,z Henry J. H. Chen,c and Fon-Shan Huanga, Journal of The Electrochemical Society, 154, H636-H641 (2007)
161
46 Omar Azzaroni, Zijian Zheng, Zhongqiang Yang, and Wilhelm T. S. Huck*, Langmuir, 22, 6730-6733 (2006)
47 Azzaroni, O.; Moya, S. E.; Farhan, T.; Brown, A. A.; Huck, W. T. S. Macromolecules, 38, 10192-10199 (2005)
48 Se Gyu Jang, Dae-Geun Choi, Sarah Kim, Jun-ho Jeong, Eung-sug Lee, and Seung-Man Yang, Langmuir, 22, 3326-3331 (2006)
49 Arrington, D.; Curry, M.; Street, S. C. Langmuir, 18, 7788-7791 (2002)
50 Li, H. W.; Kang, D. J.; Blamire, M. G.; Huck, W. T. S. Nano Lett., 2, 347-349 (2002).
51 Kohli, N.; Dvornic, P. R.; Kaganove, S. N.; Worden, R. M.; Lee, I. Macromol. Rapid Commun., 25, 935-941 (2004)
52 Takayama, S.; Ostuni, E.; Qian, X.; McDonald, J. C.; Jiang, X.; LeDuc, P.; Wu, M.-H.; Ingber, D. E.; Whitesides, G. M., Adv. Mater., 13, 570-574 (2001)
53 Delamarche, E.; Schmid, H.; Bietsch, A.; Larsen, N. B.; Rothuizen, H.; Michel, B.; Biebuyck, H. J. Phys. Chem. B, 102, 3324-3334 (1998)
54 Susan L. Brandow,*[a] Terence L. Schull,[a] Brett D. Martin,[a] Daniel C. uerin,[b] and Walter J. Dressick*[a], Chem. Eur. J., 8, No. 23 (2002)
162
55 Jinmo Kang, JaeSung You, ChoonSik Kang, James Jungho Pak, and Donghwan Kim, "Investigation of Cu metallization for Si solar cells," Solar Energy Materials & Solar Cells, 74, 91-96 (2002)
56 S. H. Lee, “Cost effective process for high-efficiency solar cells”, Solar Energy, 83, 1285 (2009).
57 Gary Hamm, Lingyun Wei, Dave Jacques, ”Development of a plated Nickel seed layer for front side metallization of silicon solar cell”
58 Vikrant A. Chaudhari, “Investigation of two step Ni/Cu metallization for low concentrator cSi solar cells”
59 C.M. Liua, W.L. Liub, S.H. Hsiehb, T.K. Tsaib, W.J. Chenc,* Applied Surface Science 243, 259–264 (2005)
60 N. Manavizadeh, “Low cost electrolplated Ni/Cu ohmic contacts for multicrystalline Si solar cells using an ultrasonic system.”, IEEE CCECE/CCGEI, Ottawa, May 2006
61 M. Alemán, N. Bay, D. Barucha, S. W. Glunz and R. Preu, “Front-side metallization of silicon solar cells by nickel plating and light induced silver plating”, Galvanotechnik, 2/2009
62 Anuj Kumar a, Mukesh Kumar a,*, Amanpal Singh a, Satinder Kumar b, Dinesh Kumar a, Microelectronic Engineering xxx (2009) xxx–xxx
63 A. Duhin a,*, Y. Sverdlov a, I. Torchinsky a, Yishay Feldman b, Y.
163
Shacham-Diamand a, Microelectronic Engineering, 84, 2506–2510 (2007)
64 S. M. Rossnagel and T. S. Kuan, J. Vac. Sci. Technol. A, 20, 1911 (2002)
65 M. W. Lane, C. E. Murry, F. R. McFeedly, P. M. Vereechen and R. Rosenberg, Appl. Phys. Lett., 83, 2330 (2003).
66 J. A. Thormton, J. Vac. Sci. Technol., 12, 830 (1975).
67 H. Lee and S. S. Wang, J. Appl. Phys., 93, 3796 (2003).
68 V. A. Vas’ko, I. Tabakovic and S. C. Riemer, Electrochemical and Solid-State Lett., 6, C100 (2003)
69 T. Hara, K. Sakata, and Y. Yoshida, Electrochemical and Solid-State Lett., 5, C41 (2002)
70 C. T. Lin and K. L. Lin, J. Mater. Sci.- Mater. Electron., 15, 757 (2004)
71 A. Ibanez and E. Fatas, Surf. Coat. Technol., 191, 7 (2005)
72 Allen J. Bard, “Electroanalytical Chemistry”, Marcel Dekker, Inc., New York (1966)
73 楊家誠,博士論文, 國立清華大學, 中華民國台灣(2005).
4 Plummer, J.D., Deal, M.D., Griffin, P.B., 2000. Silicon VLSI Technology: Fundamentals, Practice and Modeling. Prentice Hall, Inc., New Jersey, p. 700.
75 J. A. Thormton, J. Vac. Sci. Technol., 12, 830 (1975).
76 H. Lee and S. S. Wang, J. Appl. Phys., 93, 3796 (2003).
77 林正裕,博士論文, 國立清華大學, 中華民國台灣(2008).
164
78 Vickerman , J.C., Surface Analysis The Principal Techniques; John Wiley & Sons, Ltd.: Chichester, England, 1997.
79 Jiang, P.; Li, S. Y.; Xie, S. S.; Gao, Y.; Song, L. Chem-Eur J 2004, 10, 4817-4821.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *