帳號:guest(3.138.101.95)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):阮胡玉
作者(外文):Ho Ngoc
論文名稱(中文):Biodistribution, pharmacodynamics and pharmacokinetics of oral delivery of exendin-4 using pH-sensitive nanoparticles
論文名稱(外文):利用pH敏感奈米微粒載體口服Exendin-4之生物分佈,藥物動力學及藥效學探討
指導教授(中文):宋信文
指導教授(外文):Sung, Hsing-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學號:9732582
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:43
中文關鍵詞:促胰島素分泌素甲殼素聚服胺酸生物分佈藥效學藥物動力學大鼠胰島素
外文關鍵詞:exendin-4chitosanpoly-γ-glutamic acidbiodistributionpharmacodnamicpharmacokineticrat insulin
相關次數:
  • 推薦推薦:0
  • 點閱點閱:315
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Abstract
Exendin-4 is a 39-amino acid peptide that shares several glucoregulatory activities with
the mammalian incretin hormone, glucagon-like peptide-1 (GLP-1). The synthetic form of
exendin-4, exenatide, was approved as adjunctive therapy by subcutaneous injection for patients
with type 2 diabetes failing to achieve glycemic control with oral antidiabetic agents. Basically,
the oral route is the most convenient way of drug administration for patients because it can avoid
pain and reduce the complex complication. Base on our previous study, we developed
nanoparticles (NPs) composed of chitosan (CS), poly-γ-glutamic acid (γPGA) with Fe ions as the
carrier for exendin-4 delivery via the oral route. The size and zeta potential of the prepared NPs
were ~300nm and ~30mV, respectively. The exendin-4 loaded in NPs could get ~60% loading
efficiency (LE) and ~15% Loading Content (LC). To protect NPs in the acidic stomach
environment, gelatin hard capsules filled with NPs were coated with enteric coating polymer.
The enteric coating polymer, Eudragit L55-100, was dissolved beyond pH 6.0 that mimetic the
pH environment of duodenum in the GI track. In the dissolution study, the test capsule could be
dissolved immediately as it reached the duodenal region and NPs could then release exendin-4
into the systemic circulation via the opened paracellular pathway. For the in vivo study, the
biodistribution of exendin-4 loaded NPs following the oral administration to rats was performed
using the single-photon emission computed tomography (SPECT)/computed tomography (CT).
The results obtained in the SPECT/CT study indicate that the orally administered exendin-4 was
significantly absorbed into the systemic circulation. There was very high circulating exendin-4
(~48%) in the peripheral tissue and plasma (PP) at 2 h post ingestion. In the pharmacodynamic
(PD) and pharmacokinetic (PK) evaluation in a mild diabetic rat model, the orally administered
exendin-4 loaded NPs produced a slower hypoglycemic response for a prolonged period of time.
The relative bioavailability of exendin-4 orally delivered by test NPs in gelatin capsules coated
with 10% Eudragit was found to be 13.7 ± 2.1%. The results suggest the suitability of the NP
system to be used as a non-invasive alternative for the basal exendin-4 therapy.
ii

Contents
Abstract…………………………………………………………………………………………….i
Contents………………………..……………………..……………………..……………………..ii
List of Figures……………………..……………………..……………………..…………………ii
List of Tables……………………..……………………..……………………..………………… v
Chapter 1. Introduction………………………………………………………………………… 1
1.1 Exendin-4…………………………………………………………………………………….. 1
1.2 Strategies for exendin-4 delivery…………………………………………………………….. 2
1.3 Nanoparticles composed of Chitosan and poly(γ-glutamic acid) ……………………………. 4
Chapter 2. Materials and methods……………………………………………………………... 9
2.1 Depolymerization of chitosan by enzyme Hydrolysis……………………………………….. 9
2.2 Preparation of low-MW γPGA……………………………………………………………….. 9
2.3 Preparation and characterization of Exendin-4 loaded CS- γPGA Nanoparticles………….. 10
2.3.1 Preparation of Exendin-4 loaded NPs…………………………………………………. 11
2.3.2 Freeze drying exendin-4 loaded NPs………………………………………………….. 11
2.3.3 Characterization of exendin-4 loaed NPs……………………………………………... 12
2.4 Transepithelial electrical resistance (TEER) measurements………………………………… 12
2.4.1 In vitro growing Caco-2 cell monolayers…………………………………………….. 12
2.4.2 TEER study…………………………………………………………………………… 13
2.5 Dissolution study of enteric-coated capsules……………………………………………….. 13
2.5.1 In vitro dissolution study……………………………………………………………… 13
2.5.2 In vivo dissolution study……………………………………………………………… 14
2.6 In vivo study………………………………………………………………………………… 15
2.6.1 Biodistribution study…………………………………………………………………. 15
iii

2.6.2 Creating the mild diabetic rat models for PD/PK study……………………………… 15
2.6.3 In vivo PD and PK study…………………………………………………………….. 15
Chapter 3. Results and Discussions…………………………………………………………. 18
3.1 Depolymerization of chitosan and γPGA………………………………………………….. 18
3.2 Characterization of exendin-4 loaded NPs…………………………………………………. 19
3.2.1 Optimization the formulation of exendin-4 loaded NPs……………………………… 19
3.2.2 Freeze drying exendin-4 loaded NPs…………………………………………………. 20
3.3 TEER measurements……………………………………………………………………….. 23
3.4 Dissolution study of enteric-coated capsules……………………………………………….. 26
3.4.1 In vitro dissolution study……………………………………………………………… 26
3.4.2 In vivo dissolution study……………………………………………………………… 28
3.5 Bioditribution study…………………………………………………………………………. 31
3.6 In vivo PK and PD study……………………………………………………………………. 33
Chapter 4. Conclusions……………………………………………………………………….. 38
References……………………………………………………………………………………… 39
References

[1] J.H. Hamman, G.M. Enslin, A.F. Kotze, Oral delivery of peptide drugs: barriers and
developments, Bio Drugs 19 (2005) 165–177.
[2] J.A. Fix, Oral controlled release technology for peptides: status and future prospects,
Pharm. Res. 13 (1996) 1760–1764.
[3] Carino GP, Mathiowitz E. Oral insulin delivery. Adv Drug Deliv Rev 1999;35(2–3):249–
57.
[4] Zambanini A, Newson RB, Maisey M, Feher MD. Injection related anxiety in insulin-
treated diabetes. Diabetes Res Clin Pract 1999;46(3):239–46.
[5] Owens DR, Zinman B, Bolli G. Alternative routes of insulin delivery. Diabet Med
2003;20(11):886–98.
[6] Khafagy ES, Morishita M, Onuki Y, Takayama K. Current challenges in noninvasive
insulin delivery systems: a comparative review. Adv Drug Deliv Rev 2007;59(15):1521–
46.
[7] Lin YH, Sonaje K, Lin KM, Juang JH, Mi FL, Yang HW, et al. Multi-ion-crosslinked
nanoparticles with pH-responsive characteristics for oral delivery of protein drugs. J
Control Release 2008;132(2):141–9.
[8] Sonaje K, Lin YH, Juang JH, Wey SP, Chen CT, Sung HW. In vivo evaluation of safety
and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials
2009;30(12):2329–39.
[9] Thanou M, Verhoef JC, Junginger HE. Oral drug absorption enhancement by chitosan
and its derivatives. Adv Drug Deliv Rev 2001;52(2):117–26.
[10] Chen MC, Wong HS, Lin KJ, Chen HL, Wey SP, Sonaje K, et al. The characteristics,
biodistribution and bioavailability of a chitosan-based nanoparticulate system for the oral
delivery of heparin. Biomaterials 2009;30(34):6629–37.
[11] Lin KJ, Liao CH, Hsiao IT, Yen TC, Chen TC, Jan YY, et al. Improved hepatocyte
function of future liver remnant of cirrhotic rats after portal vein ligation: a bonus other
than volume shifting. Surgery 2009;145(2):202–11.  
40 
 
[12] Pan Y, Li Y, Zhao H, Zheng J, Xu H, Wei G, et al. Bioadhesive polysaccharide in protein
delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in
vivo. Int J Pharm 2002;249(1–2):139–47.
[13] Lin YH, Mi FL, Chen CT, Chang WC, Peng SF, Liang HF, et al. Preparation and
characterization of nanoparticles shelled with chitosan for oral insulin delivery.
Biomacromolecules 2007;8(1):146–52.
[14] Lin YH, Chen CT, Liang HF, Kulkarni AR, Lee PW, Chen CH, et al. Novel nanoparticles
for oral insulin delivery via the paracellular pathway. Nanotechnology
2007;18(10):105102.
[15] He X, Sugawara M, Takekuma Y, Miyazaki K. Absorption of ester prodrugs in Caco-2
and rat intestine models. Antimicrob Agents Chemother 2004;48(7):2604–9.
[16] Dodane V, Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and
structure. Int J Pharm 1999;182(1):21–32.
[17] Ma Z, Lim L-Y. Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a
comparison between chitosan molecules and chitosan nanoparticles. Pharm Res
2003;20(11):1812–9.
[18] Damge C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric
nanoparticles in diabetic rats. J Control Release 2007;117(2):163–70.
[19] O’Connor SD, Summers RM. Revisiting oral barium sulfate contrast agents. Acad Radiol
2007;14(1):72–80.
[20] Teply BA, Tong R, Jeong SY, Luther G, Sherifi I, Yim CH, et al. The use of charge-
coupled polymeric microparticles and micromagnets for modulating the bioavailability of
orally delivered macromolecules. Biomaterials 2008;29(9):1216–23.
[21] Koide SS. Chitin-chitosan: properties, benefits and risks. Nutr Res 1998;18:1091–101.
[22] Abdelwahed W, Degobert G, Stainmesse S, Fessi H. Freeze-drying of nanoparticles:
formulation, process and storage considerations. Adv Drug Deliv Rev 2006;58(15):1688–
713.
[23] Abdelwahed W, Degobert G, Fessi H. A pilot study of freeze drying of poly(- epsilon-
caprolactone) nanocapsules stabilized by poly(vinyl alcohol): formulation and process
optimization. Int J Pharm 2006;309(1–2):178–88.  
41 
 
[24] Liuquan C, Deanna S, Joanna S, David O, Kathleen LG, Xiaolin T, et al. Mechanism of
protein stabilization by sugars during freeze-drying and storage: native structure
preservation, specific interaction, and/or immobilization in a glassy matrix? J Pharm Sci
2005;94(7):1427–44.
[25] Roe RJ. Methods of X-ray and neutron scattering in polymer science. New York: Oxford
University Press; 2000 [Chapter 5].
[26] Costantino HR, Langer R, Klibanov AM. Moisture-induced aggregation of lyophilized
insulin. Pharm Res 1994;11(1):21–9.
[27] Hidalgo I, Raub T, Borchardt R. Characterization of the human colon carcinoma cell line
(Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology
1989;96(3):736–49.
[28] Ward PD, Tippin TK, Thakker DR. Enhancing paracellular permeability by modulating
epithelial tight junctions. Pharm Sci Tech Today 2000;3(10):346–58.
[29] Ranaldi G, Marigliano I, Vespignani I, Perozzi G, Sambuy Y. The effect of chitosan and
other polycations on tight junction permeability in the human intestinal Caco-2 cell line. J
Nutr Biochem 2002;13(3):157–67.
[30] Ammar HO, Khalil RM. Preparation and evaluation of sustained-release solid dispersions
of drugs with Eudragit polymers. Drug Dev Ind Pharm 1997;23(11):1043–54.
[31] Khan MZI, Prebeg Z, Kurjakovic N. A pH-dependent colon targeted oral drug delivery
system using methacrylic acid copolymers: I. manipulation of drug release using
Eudragit_ L100-55 and Eudragit_ S100 combinations. J Control Release 1999;58(2):215–
22.
[32] Evans DF, Pye G, Bramley R, Clark AG, Dyson TJ, Hardcastle JD. Measurement of
gastrointestinal pH profiles in normal ambulant human subjects. Gut 1988;29(8):1035–
41.
[33] Jin CH, Chae SY, Son S, Kim TH, Um KA, et al. A new orally available glucagon-like
peptide-1 receptor agonist, biotinylated exendin-4, displays improved hypoglycemic
effects in db/db mice. J Control Release 2009;133:172–7.
[34] J. Eng,W.A. Kleinman, L. Singh, G. Singh, J.P. Raufman, Isolation and characterization
of exendin-4, an exendin-3 analogue from Heloderma suspectum venom, J. Biol. Chem.
267 (1992) 7402–7405.  
42 
 
[35] B. Gallwitz, New therapeutic strategies for the treatment of type 2 diabetes mellitus based
on incretins, Rev. Diabet. Stud. 2 (2005) 61–69.
[36] J.F. Todd, S.R. Bloom, Incretins and other peptides in the treatment of diabetes, Diabet.
Med. 24 (2007) 223–232.
[37] O.G. Kolterman, B. Buse, M.S. Fineman, E. Gaines, S. Heintz, T.A. Bicsak, K. Taylor,
D. Kim, M. Aispoma, Y. Wang, A.D. Baron, Synthetic exendin-4 (exenatide)
significantly reduces postprandial and fasting plasma glucose in subjects with type 2
diabetes, J. Clin. Endocrinol. Metab. 88 (2003) 3082–3089.
[38] BYETTA (exenatide) injection, prescribing information. http://www.byetta.com, 2009.
[39] Amylin pharmaceuticals, Inc. Exenatide reversed phase HPLC method, 2009.
[40] Bronislava R. Gedulin, Pamela A. Smith, Carolyn M. Jodka, Kim Chen,
Pharmacokinetics and pharmacodynamics of exenatide following alternate routes of
administration, International Journal of Pharmaceutics 356 (2008) 231–238.
[41] Daniel J Drucker, Michael A Nauck, The incretin system: glucagon-like peptide-1
receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes, Lancet 2006;
368: 1696–705.
[42] Orville G., John B., Mark S., Eling Gaines, Sonja Heintz, Synthetic Exendin-4
(Exenatide) Significantly Reduces Postprandial and Fasting Plasma Glucose in Subjects
with Type 2 Diabetes, The Journal of Clinical Endocrinology & Metabolism 88(7):3082–
3089.
[43] R. Gentilella, C. Bianchi, A. Rossi and C. M. Rotella, Exenatide: a review from
pharmacology to clinical practice, Diabetes, Obesity and Metabolism, 11, 2009, 544–556.
[44] Sonaje K, Lin KJ, Wey SP, Lin CK, Yeh TH, Nguyen HN, Biodistribution,
pharmacodynamics and pharmacokinetics of insulin analogues in a rat model: Oral
delivery using pH-Responsive nanoparticles vs. subcutaneous injection, Biomaterials xxx
(2010) 1-10.
[45] A.J. Varmaa, S.V. Deshpande, J.F. Kennedy, Metal complexation by chitosan and its
derivatives: a review, Carbohydrate Polymers 55 (2004) 77–93.  
43 
 
[46] Sonaje K, Chen YC, Chen HL, Nguyen HN, Enteric-coated capsules filled with freeze-
dried chitosan/poly(g-glutamic acid) nanoparticles for oral insulin delivery, Biomaterials
31 (2010) 3384–3394.
[47] Srinivasan K., Viswanad B., Lydia Asrat, Kaul C.L., Ramarao P., Combination of high-
fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and
pharmacological screening, Pharmacological Research 52 (2005) 313–320.
[48] Arulmozhi DK, Veeranjaneyulu A, Bodhankar SL, Neonatal streptozotocin-induced rat
model of Type 2 diabetes mellitus: A glance, India Journal of pharmacology, 36 (2004)
217-221.
[49] Phoenix Pharmaceutical Inc., Exendin-4 EIA, www.phoenixpeptide.com/catalog/product-
info.php, 2010.
[50] Mercodia Corp., Rat Insulin ELISA. www.mercodia.se/products/rat-mouse.html, 2010.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *