帳號:guest(52.15.85.66)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張憲志
論文名稱(中文):電驅動液滴之電訊號研究
論文名稱(外文):The study of captured signals from electrically-driven droplet's movements
指導教授(中文):衛榮漢
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:9733513
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:54
中文關鍵詞:電驅動液滴液滴泳動電荷累積和交換
外文關鍵詞:droplet moving frequencyelectrophoresisdischarge
相關次數:
  • 推薦推薦:0
  • 點閱點閱:71
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
電驅動液滴向來是微熱流領域中一熱門的操控技術,於產業與學術界引起研究熱潮迄今未減,於此範疇中,文獻多為探討液滴受到電外場影響時,所展現之各種型態與行為變化,對於以液滴作為電荷傳輸載具時所產生電荷交換之現象並未多所著墨,因此,本文先比對液滴泳動頻率與外場電壓之關係,以兩者間的理論值與實驗值驗證基本推論後,歸納出諸多現象,包括液滴尺寸越大所負載之電荷累積量越多,以及電外場值越大液滴泳動頻率越快等,再行設計一訊號轉換暨擷取系統,成功地將液滴產生電荷交換時之電訊號解譯而出,其中亦包含產生多種液滴型態變化時的不同電訊號,並且比對訊號波形、電壓值與液滴泳動現象作一系列之初步探究,最後,於文末斟酌不同考量,提出兩種改良式之實驗架構,並且放眼未來,構想展望。
The study of electrically driven droplets has become an important aspect in microfluidics during the past decades. Yet a limited volume of research has been published regarding to the phenomenon when droplet, driven under the motion of electrophoresis, discharges with grounded electrode. On this account, this article firstly, based on our initial results, formulated one theoretical model to describe the relationship between droplets’ moving frequency and electric field. Thoroughly we comparing the experimental results with theoretical ones, can the deduction of droplet carrying large amount of charges during the motion of electrophoresis be ascertained with the conclusion that the larger the droplet is the more charges it can carry and the stronger the electric filed is the faster the droplet can move. After designing the circuit to capture the signal when discharge happens, this article successfully interpreted different kinds of signals in accords with various situations of droplet under varied DC-driven electric field. The article briefly comes up with two kinds of improvement of experimental set-up concerning different objectives in the last paragraph.
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 研究方法 4
第二章 理論基礎與文獻回顧 5
2-1 基礎理論介紹 5
2-1-1 極化現象與介電性質 5
2-2 界面張力 6
2-3 電雙層理論 7
2-4 電泳效應 8
2-5 泰勒錐 8
2-6 球狀導體之帶電量 9
2-7 近期之文獻回顧 10
第三章 實驗架構設計與量測方法 18
3-1介電油槽實驗之架構設計 18
3-2頻率量測暨訊號擷取之架構 19
第四章 量測結果與分析討論 22
4-1 液滴泳動時之數種型態變化 22
4-2 模型公式之探討 26
4-3 分析液滴泳動頻率以驗證理論假設 28
4-4 去離子液滴之AC訊號擷取與分析 31
第五章 結論與未來展望 45
5-1 結論 45
5-2 未來展望 47
參考文獻 51
[1] R. Feynman, “There’s plenty of room at the bottom,” Journal of Micro-electro-mechanical Systems, 1 (1992), 60-66.
[2] Manz, N. Graber, and H. M. Widmer, “Miniaturized total chemical analysis systems,” Sensors and Actuators B, 1 (1990), 244-248.
[3] H. C. Chang and L. Y. Yeo, Electrokinetically Driven Microfluidics and Nanofluidics. Cambridge University Press. (2009).
[4] J. Lyklema, Fundamentals of Interface and Colloid Science. Academic Press. (1995)
[5] J. S. Eow and M. Ghadiri, “Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology,” Chemical Engineering Journal, 85 (2002), 357-368.
[6] S. Moriya, K. Adachi, and T. Kotaka, “Deformation of droplets suspended in viscous media in an electric field. 2. Burst behavior,” Langmuir, 2 (1986), 161-165.
[7] J. W. Ha and S. M. Yang, ”Breakup of a multiple emulsion drop in a uniform electric field,” Journal of Colloid and Interface Science, 213 (1999), 92-100.
[8] A. Fernandez, “Response of an emulsion of leaky dielectric drops immersed in a simple shear flow: Drops less conductive than the suspending fluid,” Physics of Fluids, 20 (2008), 043304.
[9] R. Thiam, N. Bremond, and J. Bibette, “Breaking of an emulsion under an ac electric field,” Physical Review Letters, 102 (2009), 188304.
[10] J. S. Eow, M. Ghadiri, and A. Sharif, “Experimental studies of deformation and break-up of aqueous drops in high electric fields,” Collioids and Surfaces A: Physicochemistry Engineering Aspects, 225 (2003), 193-210.
[11] G. Navacues, “Liquid surface: theory of surface tension,” Reports on Progress in Physics, 42 (1979), 1131.
[12] T. Young, “An essay on the cohesion of fluids,” Philosophical Transactions of Royal Society of London, 95 (1805), 65-87.
[13] J. Zeleny, “The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces,” Physical Review, 3 (1914), 69-91.
[14] J. Zeleny, “Instability of Electrified Liquid Surfaces,” Physical Review, 10 (1917), 1-6.
[15] J. Zeleny, ”Electrical discharges from pointed conductors,” Physical Review, 16 (1920), 102–125.
[16] T. Wilson and G. I. Taylor, “The bursting of soap-bubbles in a uniform electric field,” in Mathematical Proceedings of the Cambridge Philosophical Society, 22 (1925), 728-730.
[17] J. J. Nolan, “The breaking of water drops by electric fields,” Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Science, 37 (1926), 28-39.
[18] W. A. Macky, “Some Investigations on the Deformation and Breaking of Water Drops in Strong Electric Fields,” Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 133 (1931), 565-587.
[19] G. Taylor, “Disintegration of water drops in an electric field,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Science, 284 (1964), 383-397.
[20] A. Y. H. Cho, “Contact charging of micron-sized particles in intense electric fields,” Journal of Applied Physics, 35 (1964), 2561-2564.
[21] Khayari and A. T. Perez, “Charge acquired by a spherical ball bouncing on an electrode: comparison between theory and experiment,” IEEE Transactions on Dielectrics and Electrical Insulation, 9 (2002), 589-595.
[22] M. Hase, S. N. Watanabe, and K. Yoshikawa, ”Rhythmic motion of a droplet under a dc electric field,” Physical Review E, 74 (2006), 046301.
[23] M. Takinoue, Y. Atsumi and K. Yoshikawa, “Rotary motion driven by a direct current electric field,” Applied Physic Letter, 96 (2010), 104105.
[24] J. G. Kim, D. J. Im, Y. M. Jung, and I. S. Kang, “Deformation and motion of a charged conducting drop in a dielectric liquid under a nonuniform electric field,” Journal of Colloid and Interface Science, 310 (2007), 599-606.
[25] W. D. Ristenpart, J. C. Bird, A. Belmonte, F. Dollar, and h. A. Stone, “Non-coalescence of oppositely charged drops,” Nature, 461 (2009), 377-380.
[26] M. Maruyama, H. Ishii, and Manabu Yamaguchi, “Deformation and disintegration behaviour of single water drops in an oil phase in an electric field,” Developments Chemical Engineering Mineral Processing, 11 (2003), 491-497.
[27] J. S. Eow and M. Ghadiri, “Motion, deformation and break-up of aqueous drops in oils under high electric field strengths,” Chemical Engineering and Processing, 42 (2003), 259-272.
[28] O. Pitois, P. Moucheront, and X. Chateau, “Liquid bridge between two moving spheres: An experimental study of viscosity effects,” Journal of Colloid and Interface Science, 231 (2000), 26-31.
[29] T. Head-Gordon and M. E. Johnson, “Tetrahedral structure or chains for liquid water,” Proceedings of the National Academy of Sciences of the United States of America, 103 (2006), 7973-7977.
[30] E. C. Fuchs, J. Woisetschlaeger, K. Gatterer, E. Maier, R. Pecnik, G. Holler, and H. Eisenkoelbl, “The floating water bridge,” Journal of Physics D: Applied Physics, 40 (2007), 6112-6114.
[31] N. J. Felici, “Forces et charges de petits objects en contact avec une electrode affectee d'un champ electrique, ” Revue generale de l'electricite, 75 (1966), 1145-1160.
[32] J. F. Richardson, J. H. Harker, and J. R. Backhurst, “Chemical Engineering 2: Particle Technology and Separation Processes, “ Butterworth-Heinemann, 1991.
[33] J. D. Sherwood, “The deformation of a fluid drop in an electric field_a slender-body analysis,” Journal of Physics A: Mathematical and General, 24 (1991), 4047-4053.
[34] J. S. Eow and M. Ghadiri, “Drop-drop coalescence in an electric field: the effects of applied electric field and electrode geometry,” Colloids and Surfaces A: Physicochemistry Engineering Aspects, 219 (2003), 253-279.
[35] G. Haifeng and P. Ye, “Polarization characteristic of droplet of water-in-oil emulsion,” in 2008 International Workshop on Modelling, Simulation and Optimization.
[36] P. K. Notz and O. Basaran, “Dynamics of drop formation in an electric field,” Journal of Colloid and Interface Science, 213 (1999), 218-237.
[37] H. Y. Kim, “Drop fall-off from the vibrating ceiling,” Physics of Fluids, 16 (2004), 474-477.
[38] M. Prakash and N. Gershenfeld, “Microfluidic bubble logic,” Science, 315 (2007), 832-835.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *