帳號:guest(3.147.28.202)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳柏華
論文名稱(中文):多重針狀電極在EHD熱傳提升技術之研究
論文名稱(外文):Heat Transfer Enhanced Technology by EHD with Multiple Needle Electrodes
指導教授(中文):許文震
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:9733514
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:77
中文關鍵詞:電液動力熱傳離子風針狀電極
外文關鍵詞:electrohydrodynamicsheat transfer,ionic windneedle electrode
相關次數:
  • 推薦推薦:0
  • 點閱點閱:59
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
本論文主要探討側向電液動力(EHD)技術增強鰭片的散熱效率,目的在於鰭片的自然對流之外,提升鰭片的散熱性能。此技術為加裝多重針狀電極至鰭片的側面,外加一高壓電場,使電極跟鰭片中間的空氣解離,利用解離產生的離子風,增強鰭片的熱傳效率。在本論文實驗0 ~ 18kV的電壓範圍內,電極數目的多寡會影響其熱傳性能,負電壓下電極與鰭片距離為10mm的時候,最佳為6根電極,能提升原有自然對流的1.78倍熱傳性能。此外施加電壓的極性不同,會讓其電暈放電的機制跟著改變,結果證明負高壓效果優於正高壓。本論文也探討電極擺放高度對熱傳性能的影響,在針狀電極擺在鰭片本身高度一半的位置,在正電壓下熱傳性能提升至自然對流的1.74倍。當環境的濕度改變,空氣中水分子的密度產生變化,此變化會對放電過程造成影響,結果在濕度低的時候,其熱傳性能較好。隨著溼度增加,水分子的增加阻礙離子風產生,進而降低鰭片的熱傳性能。最後本論文以EHD裝置流經的電暈電流、所需消耗的功率及實際鰭片上的接點溫度等參數,來探討EHD技術。
In this study, the heat transfer performance of heat sink is enhanced by electrohydrodynamic (EHD) technique imposed on the side edge. The aim of EHD is to increase the heat transfer rate of heat sink under the natural convection. The multiple needle electrodes are installed at the side of heat sink with a high voltage electric field applied between the heat sink and electrodes. During the voltage discharge process, the air in the electric field is ionized and then the heat dissipation will be enhanced by these moving ionized molecules which is called ionic winds. The heat transfer performance can be affected by the numbers of electrodes within the operating voltage range of 0-18 kV. For 10mm of the distance between the electrodes and the sink and negative voltage, 6 needle electrodes achieve the best heat transfer performance. The performance is 1.78 times than that for the sink only under the natural convection. Moreover, the mechanism of corona discharge can be changed due to the difference of voltage polarity. The cases for a negative voltage are better than those for a positive one. The effect of height of electrodes on heat dissipation is also taken into account in this study. When the needle electrodes are placed at the middle of height of heat sinks, the performance is enhanced 1.74 times. With an increase in humidity, the occurrence of ionic wind is retarded by these additional water molecules and thereby the heat dissipation of heat sink is decreased. Finally, the various systematic parameters such as the corona current across the EHD device, the power consumption of EHD and the junction temperature are discussed for the problem of interest.
摘要 I
Abstract II
誌謝 III
目錄 V
圖目錄 VII
第一章 前言 1
1-1緣起 1
1-2-1 EHD現象之文獻回顧 4
1-2-2 EHD於散熱應用之文獻回顧 7
1-2-3 EHD側向進氣散熱之文獻回顧 10
1-2-4 EHD與溼度關係之文獻回顧 12
第二章 原理簡介 15
2-1概論 15
2-2 EHD運作機制 16
2-3-1電暈風 18
2-3-2正高壓下對電暈風的影響 19
2-3-3負高壓下對電暈風的影響 21
2-4火花電壓 22
第三章 實驗設備及方法 24
3-1-1實驗平台介紹 24
3-1-2熱電偶校正 26
3-2-1自然對流實驗及分析 27
3-2-2 EHD實驗及分析 29
第四章 實驗結果與討論 35
4-1電極距離對熱傳性能的影響 35
4-2電極排列方式對熱傳性能的影響 39
4-3電場極性對熱傳性能的影響 44
4-4電極高度對熱傳性能的影響 49
4-5環境溼度對熱傳性能的影響 51
4-6電暈功率的效應 53
4-6-1電極距離對EHD消耗功率的關係 54
4-6-2電極極性對EHD消耗功率的關係 57
4-6-3環境溼度對EHD消耗功率的關係 59
4-7 EHD對接點溫度的影響 60
4-7-1電極距離對接點溫度的影響 60
4-7-2電極極性對接點溫度的影響 65
4-7-3環境溼度對接點溫度的影響 69
第五章 結論及未來發展 71
5-1結論 71
5-2未來發展方向 72
第六章 參考文獻 74
[1] Robinson, M., “A history of the Electric wind,” American Journal of Physics, Volume 30, Issue 5, pp. 366-372 (1962).
[2] Stuetzer, O. M., “Ion Drag Pressure Generation,” Journal of Applied Physics, V. 30, N. 7, pp. 984-994 (1959).
[3] McDonald, J.R., Smith W.B. and Spencer H.W., “A Mathematical Model for Calculating Electrical Conditions in Wire-Duct Electrostatic Precipitation Devices,” Journal of Applied Physics, V. 48, N. 6, pp2231-2243 (1977).
[4] Bonder, H., and F. Bastien, “Effect of Neutral Fluid Velocity on Direct Conversion from Electrical to Fluid Kinetic Energy in an Electro-Fluid-Dynamics (EFD) Drive,” Journal of Physics D: Applied Physics, V. 19, pp. 1657-1663 (1986).
[5] J. J. Lowke and R. Morrow, “Theory of Electric Corona including the Role of Plasma Chemistry,” Pure and Applied Chemistry, V.66, N.6, pp.1287-1294 (1994).
[6] Metwally, I.A,“Factors affecting corona on twin-point gaps under dc and ac HV” IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION Volume: 3 Issue: 4 Pages: 544-553 (1996).
[7] Moon JD, Hwang DH, Geum ST, “An EHD Gas Pump Utilizing Ring/Needle Electrode”


IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION Volume: 16 Issue: 2 pp. 352-358 (2009).
[8] Marco, S. M. and H. R. Velkoff, “Effect of Electrostatic Fields on Free Convection Heat Transfer from Flat Plate,” ASME Paper, N. 63-HT-9 (1963).
[9] O’Brien, R. J. and A. J. Shine, “Some Effects of an Electric Field on Heat Transfer from a Vertical Plate in Free Convection,” Journal of Heat Transfer, V. 89, pp. 114-116 (1967).
[10] Franke, M. E., “Effect of Vortices Induced by Corona Discharge on Free-Convection Heat Transfer From a Vertical Plate,” Journal of Heat Transfer, V. 91, pp. 427-433 (1969).
[11] Mitchell, A. S. and L. E. Williams, “Heat Transfer by the Corona Wind Impinging on a Plate Surface,” Journal of Electrostatics, V. 5, pp. 309-324 (1978).
[12] Franke, M. E. and L. E. Hogue, “Electrostatic Cooling of a Horizontal Cylinder,” ASME Journal of Heat and Mass Transfer, V. 34, pp. 544-548 (1991).
[13] Owsenek, B.L. and J. Seyed-Yagoobi, “Theoretical and Experimental Study of Electrohydrodynamic Heat Transfer Enhancement through Wire-Plate Corona Discharge,” Journal of Heat Transfer, V. 119, pp. 604-610 (1997).
[14] Hung, R. T., W. J. Sheu and C. C. Wang, “Heat transfer enhancement by needle-arrayed electrodes–An EHD integrated cooling system,” ENERGY CONVERSION AND MANAGEMENT Volume: 50 Issue: 7 pp. 1789-1796 (2009).
[15] David B. Go, Suresh V. Garimella, and Timothy S. Fisher, “Ionic winds for locally enhanced cooling,” JOURNAL OF APPLIED PHYSICS Volume: 102 Issue: 5 Article Number: 053302 (2007).
[16] David B. Go, Suresh V. Garimella, and Timothy S. Fisher, “Enhancement of external forced convection by ionic wind,” INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER Volume: 51 Issue: 25-26 pp. 6047-6053 (2008).
[17] Jewell-Larsen, N.E.; Ran, H.; Zhang, Y.; Schwiebert, M.K.; Tessera, K.A.H.; Mamishev, A.V., “Electrohydrodynamic (EHD) Cooled Laptop,” Semiconductor Thermal Measurement and Management Symposium, 2009. SEMI-THERM 2009. 25th Annual IEEE.
[18] Boutlendj N. L., Allen, H.A. Lightfoot and R. B. Neville “Positive DC corona and Sparkover in Short and Long Rod-Plane Gaps under Variable Humidity Conditions,” IEEE PROCEEDINGS-A-SCIENCE MEASUREMENT AND TECHNOLOGY Volume: 138 Issue: 1 pp. 31-36 (1991).
[19] P. A. Calva and F. P. Espino C., “Threshold Curves of the Various Modes of Corona Discharge in Atmospheric Air,” IEEE, pp.612-615 (1997).
[20] P. A. Calva and F. P. Espino C., “Effect of the Humidity in the Ionic Mobility in Reduced Air-Density,” IEEE, pp.508-511 (1998).
[21] Junhong, C., “Direct-Current Corona Enhanced Chemical Reactions”, Phd Thesis, University of Minnesota, USA, (August 2002).
[22] 顏世雄, 粘孝先, 溫坤禮 ,“高壓電工程,”全華科技圖書股份有限公司.
[23] Rickard M, Dunn-Rankin D, Weinberg F, Carleton F, “Maximizing ion-driven gas flows,” JOURNAL OF ELECTROSTATICS Volume: 64 Issue: 6 pp. 368-376 (2006).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *