帳號:guest(18.222.184.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃武彬
作者(外文):Huang, Wu-Bin
論文名稱(中文):固態氧化物燃料電池(SOFC)結合氣渦輪機(GT)應用於冷熱電聯產系統(CCHP)中之配置設計與性能分析
論文名稱(外文):Configuration Design and Performance Analysis of Solid Oxide Fuel Cell Coupled with Gas Turbine Used in Combined Cooling Heating and Power System
指導教授(中文):蔣小偉
指導教授(外文):Chiang, Hsiao-Wei D.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:9733516
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:78
中文關鍵詞:固態氧化物燃料電池氣渦輪機吸收式冷凍冷熱電聯產系統分散式發電
外文關鍵詞:SOFCGTARSCCHPDistributed generation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:467
  • 評分評分:*****
  • 下載下載:20
  • 收藏收藏:0
燃料電池具有高效率潔淨電力之特點,一直都是能源開發研究主題的重點項目之ㄧ,其中屬於中、高溫燃料電池類的固態氧化物燃料電池(Solid Oxide Fuel Cell, SOFC),具有高溫廢氣排放的特性(約1000°C),其主要優點除了電池自身已具有45~65%的高效率表現外,排氣廢熱品質亦相當高。已目前研究中指出,將SOFC結合氣渦輪機(Gas Turbine, GT)進行發電,其系統效率可達70%以上,然而此類複合式發電系統的排氣溫度仍高達500~600K,若能更進一步的回收此部份的廢熱進行再利用,則系統整體效率將可再提升10%。
本論文藉由程式的模擬,以SOFC,引進冷熱電聯產系統(Combine Cooling Heating and Power System, CCHP)的設計概念,利用SOFC/GT混成發電系統中所產生的廢熱作為熱源,驅動吸收式冷凍系統(Absorption Refrigeration System, ARS),使系統的廢熱能在系統發電的同時,提供額外的致冷(Refrigeration)能力,以減少能源的損耗,而此配置下,系統燃料利用率(Fuel Usability)將可達到100%以上。研究過程中,除了利用各組件在設計點的資料進行CCHP複合系統性能分析外,亦藉由參數設計及研究,針對CCHP內部各子系統的最佳化及系統配置進行探討,並歸納出影響系統效能的重要參數及因素。最後,完成一套結合SOFC、GT及ARS之CCHP分析研究系統,可提供後續在高效率潔淨電力及冷、熱、電共生系統研究上的參考依據。
With the requirements of high efficiency and low emissions, fuel cell has been one of the focuses of research in energy development. The Solid Oxide Fuel Cell (SOFC) is of high temperature fuel cell type. It has the characteristic of high emission temperature(about 1000℃). Besides the main advantage that the SOFC has high efficiency performance, 45~65%, the quality of the exhaust is also very high. Current studies point out that the combination of SOFC and Gas Turbine (GT) can produce efficiency more than 70%, and the exhaust temperature of this hybrid power system is as high as 300~500℃. If this waste heat can be further recycled, the overall efficiency of the system is expected to be further improved.
The simulation program of SOFC and the introduction of the concept of Combine Cooling Heating and Power System (CCHP) is used in this study. The waste heat of the SOFC/GT hybrid power generation system is used as the heat source to drive an Absorption Refrigeration System (ARS), which enables the waste heat to generate electricity in the system while providing additional cooling capacity. With this configuration, the Fuel Usability of the system can be above 100%. We not only predict the CCHP performance by using the design data points, but also conclude important parameters that affect the performance of the system by optimizing and configuring subsystems of CCHP. Finally, the CCHP analysis simulation system which combines SOFC, GT, and ARS is completed. This system can provide future reference in high efficiency clean electricity and heat, cooling, and electrical tri-generation system.
摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 IX
符號說明 XII
第一章 緒論 1
1-1 前言 1
1-2 系統簡介 2
1-2-1 固態氧化物燃料電池(SOFC) 2
1-2-2 氣渦輪機(GT) 4
1-2-3 吸收式冷凍系統(ARS) 5
1-2-4 SOFC/GT混成系統 6
1-2-5 冷熱電聯產系統(CCHP) 6
1-3 研究目的 7
第二章 冷熱電聯產系統組成 8
2-1 SOFC電池堆(Stack) 9
2-1-1 SOFC化學反應 10
2-1-2 理論電壓與過電位 11
2-2 重組器(Reformer) 14
2-3 廢熱回收鍋爐(HRSG) 15
2-4 熱交換器(Heat Exchanger) 16
2-5 燃燒室(Burner) 17
2-6 壓縮機(Compressor) 18
2-7 渦輪機(Turbine) 19
2-8 幫浦(Pump) 20
2-9 膨脹閥(Expansion Valve) 21
2-10 溴化鋰(Lithium Bromide)水溶液熱力性質 21
第三章 系統配置及研究方法 23
3-1 系統配置 23
3-1-1 SOFC/GT系統配置設定 23
3-1-2 ARS配置規劃 24
3-2 單效應吸收式冷凍系統模擬流程 25
3-3 雙效應吸收式冷凍系統模擬流程 28
3-4 系統效率分析 32
第四章 結果與討論 34
4-1 SOFC/GT系統 34
4-1-1 SOFC程式驗證 35
4-1-2 GT程式驗證 37
4-1-3 壓縮比參數分析 39
4-1-4 熱交換效率參數分析 41
4-1-5 溫度參數分析 43
4-1-6 SOFC/GT系統最佳化 45
4-2 吸收式冷凍系統 47
4-2-1 單效應吸收式冷凍系統程式驗證 47
4-2-2 雙效應吸收式冷凍系統程式驗證 49
4-2-3 溫度參數分析 53
4-2-4 濃度參數分析 55
4-2-5 吸收式冷凍系統最佳化 59
4-3 冷熱電聯產系統 61
第五章 結論與未來建議 63
5-1 結論 63
5-2 未來研究建議 65
參考文獻 66
附錄A-溴化鋰溶液性質 71
附錄B-參數設定 74
1. 何明析,獨立運轉固態氧化物燃料電池/微渦輪機混成發電系統之概念設計,清華大學,中華民國95年07月。
2. 江宜哲,生質柴油微型渦輪機發電系統性能測試,國立清華大學,中華民國95年07月。
3. F.S.Bhinder, Munzer S.Y. Edaid, Moh’d Yazid F. Mustafa, Raj .K. Calay, and Mohammed H. Kailani, “Parametric Study of The Combined Fuel Cell-Gas Turbine Power Plant,” ASME IGTI TURBO EXPO:Power for Land, Sea, and Air, GT2006-90607, pp. 703-711, May 2006.
4. Kazuo Onda, Toru Iwanari, Nobuhiro Miyauchi, Kohei Ito, Tahiro Ohba, Yoshinori Sakaki, and Susumu Nagata, “Cycle Analysis of Combined Power Generation by Planar SOFC and Gas Turbine Considering Cell Temperature and Current Density Distributions,” Journal of The Electrochemical Society, Vol.150, No.12, pp.A1569-A1576, 2003.
5. H Cohen, GFC Rogers, and HIH Saravanamuttoo, Gas Turbine Theory 4th, 1996.
6. Jack D. Mattingly, Elements of Gas Turbine Propulsion, McGraw-Hill, 1996.
7. 黃鎮江,燃料電池,全華科技圖書股份有限公司,2003。
8. 莊茂雍,熱回收式微形渦輪機發電系統之性能測試與比較,國立清華大學,中華民國94年07月。
9. Stephen R. Turns “An Introduction to Combustion”, McGraw-hill, 2000.
10. Hideyuki Uechi, Shinji Kimijima, Nobuhide Kasagi, “Cycle Analysis of Gas Turbine-Fuel Cell Hybrid Micro Generation System,” International Joint Power Generation Conference, New Orleans, Louisiana, JPGC2001/PWR-19171, June 2001.
11. E. Achenbach, “Three-Dimensional and Time Dependent Simulation of a Planar Solid Oxide Fuel Cell Stack,” Journal of Power Sources, Vol.49, pp.333-348, 1994.
12. K. Nishida, T. Takage, S. Kinoshita, T. Tsuji, “Performance Evaluation of Multi-Stage SOFC and Gas Turbine Combined Systems,” ASME TURBO EXPO 2002, Amsterdam, The Netherlands, GT2002-30109, June 2002.
13. 陳中生、邱耀平、曾錦清、周世同、陳孝輝,平板狀SOFC電池元件之建立及模擬,INER-2495,核能研究所,中華民國92年10月。
14. 洪文堂、蔡禹擎、吳思翰、邱耀平,固態氧化物燃料電池BOP之規畫及熱氣測試平台之建置,第二十二屆機械工程研討會,中華民國94年11月。
15. Rainer Kurz, “Parameter Optimization on Combined Gas Turbine-Fuel Cell Power Plants,” Solar Turbines Incorporated, San Diego, Vol.2, pp.268-273, November 2005.
16. D. A. Noren, M.A. Hoffman, “Clarifying the Butler-Volmer Equation and Relate Appromixmation for Calculating Activation Losses in Solid Oxide Fuel Cell Mdels,” Journal of Power Sources, Vol. 152, pp.175-181, 2005.
17. P. Aguiar, C.S. Adjiman, N. P. Brandon, “Anode Supported Intermediate Temperature Direct Internal Reforming Solid Oxide Fuel Cell Ⅰ:Model –Based Steady-State Performance,” Journal of Power Sources, Vol. 138, pp120-136, 2004.
18. S.H. Chan, K.A. Khor, Z.T. Xia, “A Complete Polarization Model of a Solid Fuel Cell and Its Sensitivity to the Change of Cell Component Thickness,” Journal of Power Sources, Vol. 93, pp.130-140, 2001.
19. H. Yoshizumi, K. Takeishi, S. Kinoshita, “SOFC/MGT using Cheng Cycle for High Efficiency Micro-Cogeneration Systems,” Proceeding of ISTP-16, PRAGUE, Czech Republic, 2005.
20. T. Araki, T. ohba, T. Ohba, S. Takezawa, K. Onda, Y. Sakaki, “Cycle Analysis of Planar SOFC Power Generation with Serial Connection of Low and High Temperature SOFCs,” Journal of Power Sources, Vol. 158, pp.52-59. 2006.
21. Rory Roberts, Jack Brouwer, Faryar Jabbari, Tobias Junker and Hossein Ghezel-Ayagh, “Control Design of an Atmospheric Solid Oxide Fuel Cell/Gas Turbine Hybrid System:Variable Versus Fixed Speed Gas Turbine Operation,” Journal of Power Sources, Vol. 161, pp. 484-491. 2006.
22. S.K. Park, K.S. Oh, T.S. Kim, “Analysis of the Design of a Pressurized SOFC Hybrid System Using a Fixed Gas Turbine Design,” Journal of Power Sources, Vol170, pp.130-139, June 2007.
23. M.M. Talbi, B. Agnew, “Exergy Analysis:an Absorption Refrigerator Using Lithium Bromide and Water as the Working Fluids,” Applied Thermal Engineering, Vol.20, pp.619-630, May 2000.
24. Arzu Şencan, Kemal A. Yakut, Soteris A. Kalogirou, “Exergy Analysis of Lithium Bromide/Water Absorption Systems,” Renewable Energy, Vol.30, pp.645-657, April 2005.
25. Y. Kaita, “Thermodynamics Properties of Lithium Bromide-Water Solutions at High Temperatures,” International Journal of Refrigeration, Vol.24, pp.374-390, August 2001.
26. R.D. Misra, P.K. Sahoo, A. Gupta, “Thermoeconomic Evaluation and Optimization of a Double-Effect H2O/LiBr Vapour-Absorption Refrigeration System,” International Journal of Refrigeration Vol.28, pp.331-343, May 2001.
27. 簡敏修,固態氧化物燃料電池結合微型氣渦輪機混成配置研究,國立清華大學,中華民國96年07月。
28. H.T. Chua, H.K. Toh, A. Malek, K.C. Ng, K. Srinivasan, “Improved Thermodynamic Property Fields of LiBr-H2O Solution,” International Journal of Refrigeration, Vol.23, pp.412-429, September 2000.
29. A. F. Marssardo, F. Lubelli, “Internal Reforming Solid Oxide Fuel Cell-Gas Turbine Combined Cycles (IRSOFC-GT):Part A—Cell Model and Cycle Thermodynamic Analysis,” Journal of Engineering for Gas Turbine and Power, ASME, Vol.122, pp.27-35, January 2000.
30. Bossel U.G., Final Report on SOFC Data Facts and Figures, Swiss Federal Office of Energy, Berne, 1992.
31. Yaofan Yi, Ashok D. Rao, Jacob Brouwer, G. Scott Samuelsen, “Analysis and Optimization of a Solid Oxide Fuel Cell and Intercooled Gas Turbine (SOFC–ICGT) Hybrid Cycle,” Journal of Power Sources, Vol.132, pp.77–85, May 2004.
32. Jens Pålsson, Thermodynamic Modelling and Performance of Combined Solid Oxide Fuel Cell and Gas Turbine Systems, Lund University, Sweden, 2002.
33. Kazuo Onda, Toru Iwanari, Nobuhiro Miyauchi, Kohei Ito, Takahiro Ohba, Yoshinori Sakaki, and Susumu Nagata, “Cycle Analysis of Combined Power Generation by Planar SOFC and Gas Turbine Considering Cell Temperature and Current Density Distributions,” Journal of The Electrochemical Society, Vol.150, No.12, pp.A1569-A1576, 2003.
34. Rabah Gomri, Riad Hakimi, ”Second Law Analysis of Double Effect Vapour Absorption Cooler System,” Energy Conversion and Management, Vol.49, pp.3343-3348, November 2008.
35. V. Havelsky, “Energetic Efficiency of Cogeneration Systems for Combined Heat, Cold and Power Production,” International Journal of Refrigeration, Vol.22, pp.479-485, September 1999.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *