帳號:guest(3.141.30.211)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蘇皇碩
作者(外文):Su, Huang-Suo
論文名稱(中文):奈米碳管對碳/碳複合材料機械性質與物理性質之影響
論文名稱(外文):The Effect of CNT on Mechanical and Physical Properties of C/C Composites
指導教授(中文):葉銘泉
指導教授(外文):Yip, Ming-Chuen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:9733555
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:123
中文關鍵詞:碳/碳複合材料奈米碳管機械性質物理性質熱性質
外文關鍵詞:Carbon/Carbon compositeCarbon nanotubesMachanical propertiesphysical propertiesthermal properties
相關次數:
  • 推薦推薦:0
  • 點閱點閱:60
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
碳/碳複合材料擁有低密度、低熱膨脹係數、高機械疲勞抵抗力,在極高溫的無氧環境時(高達約2200℃)仍可以維持相當優良的抗拉強度等優點,但其在碳化過程中由於高溫的裂解易導致碳/碳複合材料內部產生許多的孔隙,應此需要致密化來填補孔隙,但致密化處理耗時且繁雜,在製造過程中增加生產成本。因此本研究利用擁有良好機械性質、熱性質與物理性質之奈米碳管做為補強材,不僅抑止孔洞生長,並且提升碳/碳複合材料機械性質與物理性質。
由結果顯示,添加1.2 wt%奈米碳管擁有最佳的彎曲強度、彎曲模數與層間剪切強度,分別提升23%、19.2%與30%。在三種老化環境中,添加1.2 wt%奈米碳管之碳/碳複合材料其較具有抗老化作用。添加奈米碳管後,降低碳/碳複合材料熱膨脹係數並且增加熱傳導係數與氧化燃燒溫度,有效提高碳/碳複合材料之熱穩定性。
第一章前言........................................1
第二章研究目的與內容…............................3
2-1研究目的.......................................3
2-2研究內容……….................................4
第三章文獻回顧……................................5
3-1碳/碳複合材料介紹…………. ....................5
3-1-1碳的基本結構和特性……….....................5
3-1-2碳/碳複合材料之特性與應用……………………… 6
3-2碳/碳複合材料之製程和機械性質……………………. 7
3-2-1 碳/碳複合材料因製程影響其性質.......... 7
3-2-2 碳/碳複合材料之疲勞特性……………………….. 10
3-3 奈米碳管/高分子複合材料………………………. 11
3-3-1 奈米碳管複合材料性質…..………………………. 11
3-3-2 改質奈米碳管複合材料性質……………………... 13
3-4 酚醛樹脂備製與性質...................... 14
3-4-1 Resol Type 酚醛樹脂……………………………… 15
3-4-2 Novolac Type 酚醛樹脂…………………………… 15
3-5 環境因素對複合材料機械性質之影響…………….. 17
第四章 實驗內容及程序…………………………….. 18
4-1 實驗儀器………………....................... 18
4-2 實驗材料………………………………….. 24
4-3 多壁奈米碳管/碳/碳複合材料的製備….......... 25
4-4 實驗流程…….......………………………….. 27
4-4.1 實驗測試條件............................... 28
4-4.2 實驗測試方法………………................... 29
第五章 結果與討論…………………………….. 35
5-1 分散劑比較……………………………………….. 35
5-1.1 彎曲測試分析……………………………………… 35
5-1.2 衝擊試驗分析……………………………………… 36
5-2 靜態機械性質分析………………………………….. 36
5-2.1 彎曲測試................................... 37
5-2.2 層間剪切強度分析……...................... 40
5-2.3 衝擊能量分析……………………………………… 41
5-3溫濕老化後靜態機械性質分析……………………….. 42
5-3.1 25℃/90%RH環境下老化處理之機械性質分析….. 43
5-3.2 25℃/90%RH→ 150℃環境下老化處理之機械性質分析…………..… 44
5-3.3 25℃/90%RH→ -15℃環境下老化處理之機械性質分析……………………………………………………….. 45
5-3.4 三種老化環境下之機械性質分析………………… 46
5-5 物理性質研究…………………………………….. 48
5-5.1 XRD光譜分析……………………………………… 48
5-5.2 Raman光譜分析……………………………………. 48
5-5.3 比重與空孔率測試分析…………………………… 49
5-5.4 吸濕測試分析…………………………………… 50
5-5.5 熱傳導、熱擴散與比熱測試分析………………… 51
5-5.6 熱機械性質測試分析……………………………… 52
5-5.7 熱重損失測試分析………………………………… 53
第六章 結論………………………………………….. 56
參考文獻 …….............................. 59
附表……. ……………………………………….. 64
附圖……. ……………………………………………….. 72
[1] H.O. Pierson, “Handbook of Carbon, Graphite, Diamond and Fullerences,” Noyes New Jersey, pp. 1-69, 1993.
[2] K.K. Chawla, “Composite Material Science and Engineering,” Springer-Verlag, New York, pp. 6-228, 1987.
[3] B.T. Kelly, “Physics of Graphite,” Applied Science, London, pp. 1-361, 1981.
[4] J.D. Buckley and D.D. Edie, “Carbon-Carbon Materials and Composites,” Noyes, New Jersey, pp. 1-281,1993.
[5] G. Savage, “Carbon-Carbon Composites,” Chapman & Hall, London, pp. 323-346, 1993.
[6] E. Fitzer, “The Future of Carbon-Carbon Composites,” Carbon, Vol.25, pp. 163-190, 1987.
[7] H.H. Kuo, J.H. Chern Lin and C.P. Ju, “Effect of carbonization rate on the properties of a PAN/phenolic-based carbon/carbon composite,” Carbon, Vol.43 pp. 229-239, 2004.
[8] R. Luo, T. Liu, J. Li, H. Zhang, Z. Chen and Guanglai Tian, “Thermophysical properties of carbon/carbon composites and hysical mechanism of thermal expansion and thermal conductivity,” Carbon, Vol.42, pp. 2887-2895, 2004.
[9] Q.M. Gong, Z. Li, Z. Zhang, B. Wu, X. Zhou, Q.Z. Huang and J. Liang, “Tribological properties of carbon nanotube-doped carbon/carbon composites,” Tribology, Vol.39, pp. 937-944, 2006.
[10] X. Li, K. Li , H. Li, J. Wei and C. Wang, “Microstructures and mechanical properties of carbon/carbon composites reinforced with carbon nanofibers/nanotubes produced in situ,” Carbon, Vol.45, pp. 1662-1668, 2007.
[11] C. Li and A. Crosky, “The effect of carbon fabric treatment on delamination of 2D-C/C composite,” Composites Science and Technology, Vol.66, pp. 2633-2638, 2006.
[12] J. Li and R. Luo, “Study of the mechanical properties of carbon nanofiber reinforced carbon/carbon composites,” Composites: Part A, Vol.66, pp. 1700-1704, 2008.
[13] S.E. Hsu and C.I. Chen, “The Processing and Properties of Some C/C System” in “Superalloys, Supercomposites and Superceramics,” J.K. Tien and T. Caulfield eds., Academic Press, San Diego, CA, USA, pp. 721-744, 1989.
[14] Y. Tanabe, T. Yoshimura, T. Watanabe, T. Hiraoka, Y. Ogita and E. Yasuda, “Fatigue of C/C composites in bending and in shear modes,” Carbon, Vol.42, pp. 1665-1670, 2004.
[15] X.Liao, H. Li, W. Xu and K. Li, “Effects of tensile fatigue loads on flexural behavior of 3-D braided C/C composites,” Composites Science and Technology, Vol.68, pp. 333-336, 2008.
[16] H.G. Florian, H.G. Malte, F. Bodo, B. Wolfgang andS. Karl, “Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composite,” Composites : Part A, Vol.36, pp. 1525-1535, 2005.
[17] Y.S. Song and J.R. Youn, “Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites,” Carbon, Vol.43, pp. 1378-1385, 2005.
[18] T. Liu , Y. Tong and W.D. Zhang, “Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films,” Composites Science and Technology, Vol.67, pp. 406-412, 2007.
[19] Y. Zhou, F. Pervin, L. Lewis and S. Jeelani, “Fabrication and characterization of carbon/epoxy composites mixed with multi-walled carbon nanotubes,” Materials Science & Enginnering A, Vol.475, pp. 157-165, 2008.
[20] R.B. Mathur , S. Chatterjee and B.P. Singh, “Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties,” Composites Science and Technology, Vol.68, pp. 1608-1615, 2008.
[21] K. Hsiao, J. Alms and S.G. Advani, “Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composite,” Nanotechnology, Vol.14, pp. 791-793, 2003.
[22] T. Saito, K. Matsushige and K. Tanaka, “Chemical treatment and modification of multi-walled carbon nanotube,” Phys B, Vol.322(1-4), pp. 280-283, 2002.
[23] F.H. Gojny and K. Schulte, “Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy composites,” Composites Science and Technology, Vol.64, pp. 2303 -2308, 2004.
[24] E. Najafi , J.Y. Kim, S.H. Han and K. Shin, “UV-ozone treatment of multi-walled carbon nanotubes for enhanced organic solvent dispersion,” Colloids and Surfaces A, Vol.284-285, pp. 373-378, 2006.
[25] M.A. Kiselev and A.I. Kuzayev, “Preparation and properties of silicone Modified Phenol-Formaldehyde Resin,” U.S Patent 2685054, 1968.
[26] 村山 新一, “酚醛樹脂,” 編譯:洪純仁, 台南復文書局, 1984.
[27] E. Kumpinsky, “Process Design and Control: A Study on Resol Type phenol-Formaldehyde Runaway Reaction,” Ind Eng. Chem. Res, Vol.33, pp. 285-291, 1994.
[28] G. Odian, “Principle of Polymerixation,” 3rd Edition, Chapter 2, pp. 123-132, 1994.
[29] J.F. Paiva, S. Mayer and M.C. Rezende, “Evaluation of mechanical properties of four different carbon/epoxy composites used in aeronautical field,” Materials Research, Vol.8, pp.1,91-97, (2005).
[30] B.C. Ray, “Temperature effect during humid aging on interfaces of glass and carbon fibers reinforced epoxy composites,” Journal of Colloid and Interface Science, Vol.298, pp.111-117, (2006).
[31] M.C. Lafarie-Frenot and S. Rouquie, “Influence of oxidative environments on damage in c/epoxy laminates subjected to thermal cycling,” Composites Science and Technology, Vol.64, pp.1725-1735, (2004)
[32] D.E. Mouzakis, H. Zoga and C. Galiotis, “Accelerated enviromental aging study of polyester/glass fiber reinforced composites (GFRPCs),” Composites: Part B, Vol.39, pp.467-475, (2008).
[33] T. Sinmazcelik and A.A. Aric, “Thermal cycles effect on interlaminar shear strength (ILSS) and impact behavior of carbon/PEI composites,” J MATER SCI, Vol.44, pp.1233-1241, (2006).
[34] Z. Shen, S. Bateman, D.Y. Wu, P. Mcmahon, M. Dell’Olio and J. Gotama, “The effect of carbon nanotube on mechanical and thermal properties of woven glass fibre reinforced polyamide-6 nanocomposites,” Composites Science and Technology, Vol.69, pp. 239 -244, 2009.
[35] C.A.A. Cairo, M. Florian, M.L.A. Graca and J.C. Bressiani, “Kinetic study by TGA of the effect of oxidation inhibitor for carbon-carbon composite,” Materials Science & Engineering A, Vol.358, pp. 298 -303, 2003.
[36] 許明發, “碳、碳纖維、碳/碳複合材料之加工技術及應用,” 滄海書局, 1997.
[37] 郭華軒, “碳化速率對碳/碳複合材料機械及磨潤性質影響之研究,” 國立成功大學材料科學及工程學系博士論文, 2004.
[38] 林亦杰, “溫度效應對奈米碳管/玻璃纖維基層板之機械性質與黏彈特性研究,” 國立清華大學動力機械工程學系碩士論文, 2008.
[39] 曾聖修, “酚醛樹脂/六羰鉬製作碳/碳奈米複合材料對燃料電池雙極板之機械及電性質研究,” 國立清華大學動力機械工程學系碩士論文, 2008.
[40]龔曉鐘, 湯皎寧, 古坤明和楊欽鵬, “碳奈米管分散性研究,” 深圳大學理學院, 2005.
[41]麥富德, 黃楓台, 簡國明, 王永銘和陳秋燕, “奈米碳管專利地圖集分析,” 行政院國家科學委員會科學技術資料中心, 台灣台北, 2002.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *