帳號:guest(3.145.107.181)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王智瑩
作者(外文):Wang, Chih-Ying
論文名稱(中文):結合奈米碳管電極之電化學生醫感測平台及其應用於奈米抗生素膠囊臨床前藥物釋放特性評估
論文名稱(外文):An Electrochemical Biosensing Platform Using Carbon Nanotubes Electrodes for Preclinical Evaluation of Drug Release Profile of Antibiotic Nanocapsules
指導教授(中文):洪建中
指導教授(外文):Hong, Chien-Chong
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:9733598
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:80
中文關鍵詞:奈米碳管電化學
相關次數:
  • 推薦推薦:0
  • 點閱點閱:94
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
在本論文研究中,開發與設計一套可用於微量、即時連續量測且適用於抗生
素奈米膠囊藥物釋放監測之奈米碳管電極式的電化學生醫感測平台。本研究首先
以微機電技術設計製作電化學感測電極與微流體晶片,並以檢測電路與虛擬控制
系統,進行感測訊號最佳化處理;最後以所研發之奈米碳管電極電化學生醫感測
平台應用於奈米抗生素膠囊藥物釋放臨床前評估探討。
電化學生醫感測平台中,電極的設計為影響感測訊號的關鍵元件之一,電極
材料與表面結構特性在生醫感測訊號上有重大影響。本研究結合奈米碳管於電化
學生醫感測器上,使用電泳或液滴塗佈方式將奈米碳管修飾在金電極表面,成功
提升電極強度及訊號放大能力,可承受最大電流從 0.0208 mA 提升至 0.6680
mA;訊號放大能力於 1/ml 抗生素濃度條件下,由 0.0222 mA 放大至 0.3051
mA,訊號放大 13.75 倍。抗生素純藥測試所建立的校正曲線線性回歸係數為
R2=0.9837,線性濃度範圍 1~ 10 g/ml,靈敏度為 0.023 mA•ml/g。
傳統 HPLC 等大型儀器無法連續且即時量測奈米抗生素膠囊釋放狀況,本研
究所開發之結合奈米碳管電極的電化學生醫感測平台,在抗生素奈米膠囊的連
續釋放量測中,量得抗生素奈米膠囊於第 4 天開始啟動藥物釋放,釋放速率為
0.0258g/ml.hr,至第七天累積釋放濃度達 24.98 g/ml。以本論文所研究開發
之結合奈米碳管電極的電化學生醫感測平台可提供奈米藥物膠囊開發合成過程
的調整依據,同時也提供臨床前用藥資訊,提供在動物試驗上也無法獲得之局
部即時濃度值,增進奈米藥物膠囊開發速度,及降低未來臨床試驗風險。希望
藉由整合電化學奈米碳管電極設計與檢測平台,於臨床前針對奈米抗生素膠囊
藥物釋放特性作感測評估。未來可進一步整合被動式無線傳輸系統,植入在動
物體中,做長期藥物釋放監控。
ii
ABSTRACT
In this thesis, an electrochemical biosensing platform using carbon nanotubes
electrodes, which can be used to evaluate drug release profiles of antibiotic
nanocapsules in real time and continuous mode, has been successfully designed,
developed, and characterized. First, the electrochemical sensing electrode has been
fabricated by MEMS technologies. Then, the biosensing platform is connected to the
sensing circuit and LabVIEW program for signal acquire and processing. Finally,
the developed carbon nanotubes electrode and electrochemical biosensing platform
have been applied for pre-clinical evaluation of drug release profiles of antibiotic
nanocapsules.
The electrode is one of the key components for electrochemical sensing. The
materials and the surface characteristics of electrodes play an important role in
electrochemical sensing. Here, we successfully combined the carbon nanotubes
electrodes with electrochemical biosensor, using electrophoresis deposition or
drop-coating method to deposit carbon nanotubes on the surfaces of the gold
electrodes. The measurement results show that the maximum affordable current has
been improved 0.0208 mA to o.6680 mA. And, the sensing signals are amplified up to
13.75 times using carbon nanotube-modified electrodes. The linear range of the
developed electrochemical biosensing platform using carbon nanotubes electrodes is
from 1 g/ml to 10g/ml (R2=0.9837). The sensitivity of the developed system is
0.023 mA•ml/g.
The HPLC and other traditional instrument could not detection the drug release
from nanocapsules in real time and continuous mode. According to the measurements
using our developed electrochemical biosensing platform, it shows that antibiotic nanocapsules start to increase the drug release on the 4th day and the release rate is
0.0258 μg/ml.hr. The drug release of antibiotic nanocapsules reached 24.98
μg/ml on the 7th day.
The antibiotic biosensor platform using carbon nanotube electrodes for
preclinical evaluation of drug release profile of nanocapsules presented in this work
showed good performance in sensing of antibiotic Teoplanin drug samples. The
antibiotic biosensor platform could be further integrated with a micro fluidic platform
for controlled synthesis of nanocapsules to feedback the drug release profile for
optimization of the synthesis process. In addition, the developed biosensor can be
integrated with wireless passive transmission module to be an implantable biomedical
microsystem for health monitoring in future.
iv
目錄
摘要.................................................................................................................................i
ABSTRACT...................................................................................................................ii
目錄...............................................................................................................................iv
圖目錄...........................................................................................................................vi
表目錄........................................................................................................................ viii
第一章 緒論................................................................................................................1
1.1. 研究簡介........................................................................................................1
1.2. 傳統藥物開發與檢測程序............................................................................1
1.3. 奈米膠囊藥物................................................................................................3
1.4. 藥物釋放之臨床前試驗與臨床試驗............................................................4
1.5. 微全分析系統與生醫感測平台....................................................................4
1.6. 研究動機........................................................................................................6
1.7. 研究目的與方法............................................................................................6
1.8. 論文架構........................................................................................................7
第二章 電化學生醫感測平台開發............................................................................9
2.1. 電化學生醫感測介紹....................................................................................9
2.2. 傳統之電化學感測器及基本原理..............................................................10
2.2.1. 循環伏安法 ( Cyclic Voltammetry, CV )...................................................12
2.3. 電化學感測電極設計..................................................................................14
2.3.1. 電極幾何形狀..............................................................................................14
2.3.2. 電極材料......................................................................................................17
2.3.2.1. 電極強度......................................................................................................18
2.3.2.2. 電極訊號放大..............................................................................................18
2.3.2.3. 電極表面重生與生物相容性......................................................................19
2.3.2.4. 奈米碳管修飾電極......................................................................................19
2.3.2.4.1. 奈米碳管基本特性......................................................................................20
2.3.2.4.2. 奈米碳管於感測器之應用..........................................................................23
2.4. 電化學感測電極製程..................................................................................24
2.4.1. 電鍍..............................................................................................................26
2.5. 奈米碳管電極製程......................................................................................28
2.6. 微流體晶片整合..........................................................................................32
第三章 電化學生醫感測平台測試..........................................................................34
3.1. 感測電路及虛擬儀控設計..........................................................................34
3.2. 抗生素檢測藥物..........................................................................................37
3.3. 藥品準備與實驗步驟..................................................................................38 3.4. 電極測試結果..............................................................................................38
3.4.1. 電極訊號放大探討......................................................................................38
3.4.2. 電極強度探討..............................................................................................40
3.5. 奈米碳管修飾電極純藥測試......................................................................41
3.5.1. pH 變化對電化學感測之影響....................................................................41
3.5.2. 溫度變化對電化學感測之影響..................................................................44
3.5.3. 校正曲線( calibration )與靈敏度( sensitivity )...........................................45
3.6. 分析與討論..................................................................................................47
第四章 奈米碳管電極之電化學生醫感測器在奈米抗生素膠囊局部藥物釋放特
性評估之應用..............................................................................................................48
4.1. 骨髓炎臨床上醫療現況[70].......................................................................48
4.2. 奈米抗生素膠囊合成..................................................................................48
4.3. 奈米抗生素膠囊藥物釋放..........................................................................50
4.4. 以電化學生醫感測平台量測奈米抗生素膠囊藥物局部釋放..................51
4.4.1. 奈米抗生素膠囊藥物釋放觀察..................................................................52
4.4.2. 奈米抗生素膠囊藥物釋放濃度曲線..........................................................54
4.5. 分析與討論..................................................................................................56
第五章 總結與未來研究建議..................................................................................57
5.1. 討論與結論..................................................................................................57
5.2. 本論文研究之學術創新與價值..................................................................58
5.3. 未來研究建議..............................................................................................58
參考文獻......................................................................................................................61
附錄..............................................................................................................................69
A
抗生素感測專一性分析..............................................................................69
B
動物實驗之準備..........................................................................................70
C
裸金電極純藥測試及各項參數探討..........................................................72
發表著作......................................................................................................................76
[1] C. T. Laurencin, T. Gerhart, P. Witschger, R. Satcher, A. Domb, A. E.
Rosenberg, P. Hanff, L. Edsberg, W. Hayes, and R. Langer, "Bioerodible
Polyanhydrides for Antibiotic Drug Delivery: In Vivo Osteornyelitis Treatment
in a Rat Model System ", Journal of Orthopaedic Research, vol.11,pp.256-262,
1993.
[2] H. Wahlig, E. Dingeldein, R. Bergmann, K. Reuss,"The release of gentamicin
from polymethylmethacrylate beads. An experimental and pharmacokinetic
study ", Journal of Bone and Joint Surgery - Series B, vol.60, pp.270-275, 1978.
[3] D. Arcos, C.V. Ragel, M. Vallet-Regm, "Bioactivity in glass/PMMA composites
used as drug delivery system", Biomaterials, vol.22, pp. 701-708, 2001.
[4] G. Gregoriadis, "Engineering liposomes for drug delivery: progress and
problems",Trends in Biotechnology, vol.13, pp.527–537, 1995.
[5] G. S. Kwon, K. Kataoka, "Block copolymer micelles as long-circulating drug
vehicles ",Advanced Drug Delivery Reviews, vol.16, pp.295–309, 1995.
[6] C. X. Song, V. Labhasetwar, H. Murphy, X. Qu, W. R. Humphrey, R. J.
Shebuski, R. J. Levy, "Formulation and characterization of biodegradable
nanoparticles for intravascular local drug delivery", Journal of Controlled
Release, vol.43, pp.197–212, 1997.
[7] K. Avgoustakis, A. Beletsi, Z. Panagi, P. Klepetsanis, A. G. Karydas, D. S.
Ithakissios, "PLGA–mPEG nanoparticles of cisplatin: in vitro nanoparticle
degradation, in vitro drug release and in vivo drug residence in blood properties",
Journal of Controlled Release, vol.79, pp.123–135, 2002.
[8] Y. Nishioka, H. Yoshino, "Lymphatic targeting with nanoparticulate system",
Advanced Drug Delivery Reviews, vol.47, pp.55–64, 2001.
[9] A. Manz, N. Gtaber, H. M. Widmer, " Miniaturized total chemical analysis
systems: a novel concept for chemical sensing ", Sensors and Actuators B,
Chemical, vol.1, pp.244-248, 1990.
[10] K. Seiler, D. J. Harrison, A. Manz,"Planar glass chips for capillary
electrophoresis: repetitive sample injection, quantitation, and separation
efficiency", Analytical Chemistry, vol.65, pp.1481-1488, 1993.
[11] R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. K. Manu, R. Lange,
O. C. Farokhzad, " Microfluidic platform for controlled synthesis of polymeric
nanoparticles ", Nano Letters, vol.8, pp.2906–2912, 2008.
[12] J. S. Hong, S. M. Stavis, S. H. D. Lacerda, L. E. Locascio, S. R. Raghavan,
M. Gaitan, " Microfluidic directed self-assembly of liposome-hydrogel hybrid
nanoparticles ", Langmuir, vol.26, pp.11581–11588, 2010.
[13] A. E. HERR, A. V. HATCH, W. V. GIANNOBILE, D. J. THROCKMORTON,
H. M. TRAN, J. S. BRENNAN, A. K. SINGH, "Integrated Microfluidic
Platform for Oral Diagnostics", Annals of the New York Academy of Sciences,
vol.1098, pp.362-374, 2007.
[14] S. Senapati, A. R. Mahon, J. Gordon, C. Nowak, S. Sengupta, T. H. Q. Powell, J.
Feder, D. M. Lodge, H. C. Chang, "Rapid on-chip genetic detection microfluidic
platform for real world applications", Biomicrofluidics, vol.3,
pp.022407-1- 7, 2009.
[15] 楊正義、陳吉峰、葉怡均、陳正龍、陳家俊,金屬、半導體奈米晶體在生物
檢測及分析上的應用, 物理雙月刊, 第 23 卷,第 6 期,667-677 頁,2001 。
[16] L. C. Clark, C. Lyons, "Electrode system for continuous monitoring in
cardiovascular surgery", Annals of the New York Academy of Sciences, 29, 102.
1962.
[17] P. Bergveld, “Development of an ion-sensitive solid-state device for
neurophysiological measurements”, IEEE Transactions on Biomedical
Engineering, Vol. 17, pp.70-71, 1970.
[18] M. D. P. T. Sotomayor, A. A. Tanaka and L. T. Kubota, “Development of an
enzymeless biosensor for the determination of phenolic compounds”, Analytica
Chimica Acta, Vol. 455, pp. 215-223, 2002.
[19] W. M. Yeh and K. C. Ho, “Amperometric morphine sensing using a molecularly
imprinted polymer-modified electrode”, Analytica Chimica Acta, Vol. 542, pp.
76-82, 2005.
[20] X. Pang, D. He, S. Luo and Q. Cai, “An amperometric glucose biosensor
fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube
arrays composite”, Sensors and Actuators B, Chemical, Vol.137, pp.134–138,
2009.
[21] 吳浩青、李永舫,電化學動力學,初版,科技圖書股份有限公司,2001。
[22] D. G. Sanderson, L. B. Anderson, "Filar Electrodes: Steady-State Currents and
Spectroelectrochemistry at Twin Interdigitated Electrodes ", Analytical
Chemistry, vol.57, pp.2388–2393, 1985.
[23] C. E. Chidsey, B. J. Feldman, C. Lundgren, R. W. Murray,
"Micrometer-Spaced Platinum Interdigitated Array Electrode: Fabrication,
Theory, and Initial Use", Analytical Chemistry, vol.58, pp.601–607, 1986.
[24] J. S. Shim, M. J. Rust, C. H. Ahn, "Interdigitated Array Electrodes with Nano
Gaps Using Optical Lithography and Controlled Undercut Method",
Nanotechnology, 2008. NANO '08. 8th IEEE Conference on, pp.851–854, 2008.
[25] M. Morita, O. Niwa, T. Horiuchi, "Interdigitated array microelectrodes as
electrochemical sensors", Electrochimica Acta, vol. 42, pp.3177–3183, 1997.
[26] Z. Liu, J. Li, T. You, X. Yang, E. Wang, "Voltammetric Study of Vitamin K3
at Interdigitated Array Microelectrodes", Electroanalysis, vol.11,pp.53–58, 1999.
[27] X. Zhu, J. W. Choi, and C. H. Ahn, "A New Dynamic Electrochemical
Transduction Mechanism for Interdigitated Array Microelectrodes," Lab Chip,
vol.4, pp.581–587, 2004.
[28] A. J. Bard, L. R. Faulkner, Electrochemical method :fundamentals and
applications, 2nd ed. , New York , John Wiley & Sons, 2001.
[29] P. A. Fiorito, V. R. Goncales, E. A. Ponzio, S. I. C. de Torresi, "Synthesis,
characterization and immobilization of Prussian blue nanoparticles. A potential
tool for biosensing devices", Chemical Communications, pp.366-368, 2005.
[30] S. Cherevko, C. H. Chung, "Gold nanowire array electrode for non-enzymatic
voltammetric and amperometric glucose detection", Sensors and Actuators B,
Chemical, vol.142, pp.216-223, 2009.
[31] X. Zhang, Y. Wu, b Y. Tu, S. Liu, "A reusable electrochemical immunosensor
for carcinoembryonic antigen via molecular recognition of glycoprotein antibody
by phenylboronic acid self-assembly layer on gold", Analyst, vol.133,
pp.485-492, 2008.
[32] S. Choi, J. Chae, "A regenerative biosensing surface in microfluidics using
electrochemical desorption of short-chain self-assembled monolayer", Microfiuid
Nanofluid, vol.7, pp.819–827, 2009.
[33] G. P. Rao, C. Lu, F. Su, "Sorption of divalent metal ions from aqueous solution
by carbon nanotubes: A review", Separation and Purification Technology, vol.58,
pp.224–231, 2007.
[34] W Mokwa, "MEMS Technologies for Epiretinal Stimulation of The Retina",
Journal of Micromechanics and Microengineering, vol.14, pp. S12–S16, 2004.
[35] M. K. Gheith, V. A. Sinani, J. P. Wicksted, R. L. Matts, N. A. Kotov,
"Single-Walled Carbon Nanotube Polyelectrolyte Multilayers and Freestanding
Films as a Biocompatible Platform for Neuroprosthetic Implants", Advanced
Materials, vol.17, pp.2663-2670, 2005.
[36] S. Iijima, "Helical microtubules of graphitic carbon", Nature, vol.354, pp.56–58,
1991.
[37] Csilla MIK□, synthesis, characterization and macroscopic manipulation of
carbon nanotubes, Ph.D Dissertation, Lausanne, □COLE POLYTECHNIQUE
F□D□RALE DE LAUSANNE, 2005.
[38] R. S. Ruoff, D. C. Lorents, "Mechanical and thermal properties of carbon
nanotubes", Carbon, vol.33, pp.925–930 , 1995.
[39] S. Berber, Y. K. kwon, D. Tomanek, " Unusually High Thermal Conductivity of
Carbon Nanotubes ", Physcal Review Letters, vol.84,pp. 4613–4616, 2000.
[40] S. Bandow, "Radial Thermal Expansion of Purified Multiwall Carbon Nanotubes
Measured by X-ray Diffraction ", Japanese Journal of Applied Physics, vol. 36,
pp. L1403–L1405, 1997
[41] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, "
Young’s modulus of single-walled nanotubes ", Physcal Review B, vol.58, pp.
14013–14019, 1998.
[42] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, "
Strength and breaking mechanism of multiwalled carbon nanotubes under tensile
load ", Science, vol. 287, pp. 637–640, 2000.
[43] P.J. Britto, K.S.V. Santhanam and P.M. Ajayan, “Carbon nanotube electrode for
oxidation of dopamine”, Bioelectrochemistry and Bioenergetics, Vol.41,
pp.121-125, 1996.
[44] J. N. Wohlstadter , J. L. Wilbur, G. B. Sigal, H. A. Biebuyck, M. A. Billadeau, L.
Dong, A. B. Fischer, S. R. Gudibande, S. H. Jameison, J. H. Kenten, J. Leginus, J. K. Leland, R. J. Massey, S. J. Wohlstadter, “Carbon Nanotube-Based
Biosensor”, Advanced Materials, Vol.15, pp.1184-1187, 2003.
[45] J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han and M.
Meyyappan, “Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA
Detection”, Nano Letters, Vol.3, pp,597-602, 2003.
[46] S. Hrapovic, Y. Liu, K. B. Male, and J. H. T. Luong, “Electrochemical
Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes”,
Analytical Chemistry, Vol.76, pp.1083-1088, 2004.
[47] Y. Lin, F. Lu, J. Wang, ” Disposable Carbon Nanotube Modified Screen-Printed
Biosensor for Amperometric Detection of Organophosphorus Pesticides and
Nerve Agents”, Electroanalysis, Vol.16, pp.145-149, 2004.
[48] M. D. Rubianes and G. A. Rivas, “Enzymatic Biosensors Based on Carbon
Nanotubes Paste Electrodes”, Electroanalysis, Vol.17, pp.73-78, 2004.
[49] J. Oh, S. Yoo, Y. W. Chang , K. Lim and K. H. Yoo,” Carbon nanotube-based
biosensor for detection hepatitis B”, Current Applied Physics, Vol.9, pp.229-231,
2009.
[50] J. Y. Choi, K. Seo, S. R. Cho, J. R. Oh, S. H. Kahng, J. Park, "Screen-printed
anodic stripping voltammetric sensor containing HgO for heavy metal analysis",
Analytica Chimica Acta, vol.443, pp.241–247, 2001.
[51] J. B. Cooper, S. Pang, S. Albin, J. Zheng, R. M. Johnson, "Fabrication of
Boron-Doped CVD Diamond Microelectrodes", Analytical Chemistry, vol.70,
pp.464–467, 1998.
[52] Z. Zou, A. Jang, E. MacKnight, P. M. Wu, J. Do, P. L. Bishop, C. H. Ahn,
"Environmentally–Friendly Disposable Sensors with Microfabricated On-Chip
Planar Bismuth Electrode for in situe Heavy Metal Ions Measurement, " Sensors
and Actuators B, Chemical, vol.134, pp. 18–24, 2008.
[53] H. Yang, S. W. Kang, " Improvement of thickness uniformity in nickel
electroforming for the LIGA process ", International Journal of Machine Tools &
Manufacture, vol.40, pp.1065–1072, 2000.
[54] J. Kong, A. M. Cassell and H. Dai, "Chemical vapor deposition of methane for
single-walled carbon nanotubes", Chemical Physics Letters, Vol. 292, pp.
567-574, 1998.
[55] P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, and H. Dai, " Toward Large
Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly
Sensitive and Selective Molecular Detection", Nano Letters, Vol.3, pp.347–351,
2003.
[56] X. Pang, D. He, S. Luo, Q. Cai, "An amperometric glucose biosensor fabricated
with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays
composite", Sensors and Actuators B, Vol.137, pp.134–138, 2009
[57] C. L. Choong, J. S. Bendall, W. I. Milne, "Carbon nanotube array: A new MIP
platform", Biosensors and Bioelectronics, Vol.25, pp.652-656, 2009.
[58] F. Berti, L. Lozzi, I. Palchetti, S. Santucci and G. Marrazza, "Aligned carbon
nanotube thin films for DNA electrochemical sensing", Electrochimica Acta,
Vol.54, pp.5035-5041, 2009
[59] C. Karuwan, D. Phokharatkul, A. Wisitsoraat, A. Tuantranont, "Miniturized
electrochemical cell system on chip with carbon nanotube based electrodes for
miltiple chemical detections using differential pulsed voltammetry", Proceedings
of the 13th International Conference on Miniaturized Systems for
Chemistry and Life Sciences (micro-TAS 2009), Jeju, Koera, November 1-5,
2009.
[60] K. Yamamoto, S. Akita, Y. Nakayama, "Orientation and purification of carbon
nanotubes using ac electrophoresis", Journal of Physics D, Applied Physics ,
vol.31, pp.L34-L36, 1998.
[61] M. S. Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S.
Nahm, E. K. Suh, "DC electric field assisted alignment of carbon nanotubes on
metal electrodes", Solid-State Electronics, vol.47, pp.2075–2080, 2003.
[62] A. R. Boccaccini, J. Cho, J. A. Roether, B. J.C. Thomas, E. J. Minay, M. S. P.
Shaffer, "Electrophoretic deposition of carbon nanotubes", Carbon, vol.44, pp.
3149–3160, 2006.
[63] S. Sivaramakrishnan, R. Rajamani, C. S. Smith, K. A. McGee, K. R. Mann, N.
Yamashit, "Carbon nanotube-coated surface acoustic wave sensor for carbon
dioxide sensing", Sensors and Actuators B, Chemical, vol.132, pp.296-304,
2008.
[64] T. Gan, K. Li, K. Wu, "Multi-wall carbon nanotube-based electrochemical
sensor for sensitive determination of Sudan I", Sensors and Actuators B,
Chemical, vol.132, pp.134–139, 2008.
[65] Y. Lu, C. Partridge, M. Meyyappan, J. Li, "A carbon nanotube sensor array for
sensitive gas discrimination using principal component analysis", Journal of
Electroanalytical Chemistry, vol.593, pp.105-110, 2006.
[66] 廖欣誼,兩種不同速效劑量下 Teicoplanin 血中濃度的比較,碩士論文,台
北,國立台灣大學醫學系,2007
[67] S. Palaharn, T. Charoenraks, N. Wangfuengkanagul, K. Grudpan, O. Chailapakul,
"Flow injection analysis of tetracycline in pharmaceutical formulation with
pulsed amperometric detection", Analytica Chimica Acta, vol.499, pp. 191–197,
2003.
[68] N. Mochizuki, K. Ohno, T. Shimamura, Hiroyuki Furukawa, Satoru Todo,
Satoshi Kishino, "Quantitative determination of individual teicoplanin
components in human plasma and cerebrospinal fluid by high-performance
liquid chromatography with electrochemical detection", Journal of
Chromatography B, vol.847, pp.78–81, 2007.
[69] B. Jeong, Y. H. Bae, D. S. Lee, S. W. Kim, "Biodegradable block copolymers as
injectable drug-delivery systems", Nature, vol.388, pp.860–862, 1997.
[70] K. T. Peng, C. F. Chen, I. M. Chu, Y. M. Li, W. H. Hsu, R. W. W. Hsu, P. J.
Chang, "Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable
thermosensitive hydrogel nanoparticles", Biomaterials, vol.31, pp.5227-5236,
2010.
[71] X. L. Luo, J. J. Xu, Y. Du, H. Y. Chen, "A glucose biosensor based on
chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step
electrodeposition", Analytical Biochemistry, vol.334, pp.284–289, 2004.
[72] F. Mizutani, S.Yabuki, Y. Sato, "Voltammetric enzyme sensor for urea using
mercaptohydroquinone-modified gold electrode as the base transducer
",Biosensors & Bioelectronics, vol.12, pp.321–328, 1997.
[73] B. K. Jena, C. R. Raj, "Amperometric L-Lactate Biosensor Based on Gold
Nanoparticles", Electroanalysis, vol.19, pp.816–822, 2007.
[74] H. Ju, D. Zhou, Y. Xiao, and H. Chen, "Amperometric Biosensor for Glucose
Based on a Nanometer-Sized Microband Gold Electrode Coimmobilized with Glucose Oxidase and Poly(o-phenylenediamide)", Electroanalysis, vol.10,
pp.541–545, 1998.
[75] C. Li, J. Han, C. H. Ahn, "Flexible biosensors on spirally rolled micro tube for
cardiovascular in vivo monitoring", Biosensors and Bioelectronics, vol.22,
pp.1988–1993, 2007.
[76] F. Salam, I. E. Tothill, "Detection of Salmonella typhimurium using an
electrochemical immunosensor",Biosensors and Bioelectronics, vol.24,
pp.2630–2636, 2009
(此全文限內部瀏覽)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *