帳號:guest(18.219.86.155)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪惠君
論文名稱(中文):增進巨磁阻感測元件在微磁場下靈敏度之研究
論文名稱(外文):Improvement of sensitivity of giant magnetoresistance sensor under small magnetic field
指導教授(中文):衛榮漢
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:9733604
出版年(民國):99
畢業學年度:99
語文別:中文
論文頁數:76
中文關鍵詞:巨磁阻多層堆疊
外文關鍵詞:Multi-layerGMR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
編譯器為精密定位之重要零組件,隨著精密量測技術的發展,一直朝高精密度之需求邁進。其中,磁性感測元件目前廣泛應用在線性移動系統與角度定位系統上。而本研究結合微機電製程技術及巨磁阻效應並以惠斯同電橋為電路架構,設計製作一巨磁阻感測元件。將此元件與線性滑軌以及磁性編譯器作整合,再配合外部控制電路,藉此達到精準控制線性位移的目的。
由於材料、膜厚、線寬等因素都會影響感測電性、磁性以及靈敏度等因此要測試找出最適合元件規格的最佳參數;嘗試透過改變自旋閥磁膜膜層結構、不同比例長寬比、線寬以及多層推疊的方式來改善磁電阻變化率,並且透過控制磁性退火處理方式,可達到高磁電阻變化率。
以IrMn為反鐵磁層材料的自旋閥透過磁性退火處理,磁電阻變化率可從2 %大幅提升到4 %。自由層的翻轉場值近零磁場區段受到間隔層的厚度影響,代表感測元件可以應用在微磁場下,而長寬比比例1:6與1:12對於自由層翻轉場值影響差異小;較大的磁膜線寬可提升磁電阻變化率,線寬8 μm約在6~7 %,而10 μm可達8 %左右。
不同的磁性退火條件影響著膜層成長的品質。線寬10 μm、長寬比比例為1:6的蛇紋形磁膜之感測元件,在外加磁場2k Oe下,以320°C的溫度施加兩小時後,可以得到約8.6 %的磁電阻變化率,將此元件在線性移動平台上測試,以自旋閥結構可以製作出輸出訊號高達90 mV的感測器。
摘要 I
Abstract III
致謝 V
目錄 VI
圖 目 錄 IX
表目錄 XVI
第一章、緒論 1
1-1前言 1
1-2研究動機與目的 2
1-3磁電阻元件的應用 3
1-4研究方法 4
第二章、理論基礎與文獻回顧 5
2-1理論基礎介紹 5
2-1-1磁電阻原理 5
2-1-2磁電阻的分類 5
2-1-3差異性自旋散射 7
2-1-4巨磁阻的膜層結構 8
2-1-5影響巨磁阻的重要因素 14
2-2線性編譯器 18
2-3磁性感測元件電路設計原理 19
2-4磁感測器的文獻回顧 22
第三章、磁性感測元件之製作與量測 27
3-1元件形狀與尺寸設計 27
3-2晶片製程設計 28
3-2-1光罩製作 28
3-2-2晶片清洗 29
3-3實驗設備 32
3-3-1濺鍍系統 32
3-3-2電子鎗真空蒸鍍系統 33
3-3-3磁性退火系統 34
3-4量測設備與實驗架構 35
3-4-1磁阻量測系統 36
第四章、GMR磁感測元件分析之結果與討論 38
4-1自旋閥結構 38
4-1-1磁性退火條件對於磁感測元件的影響 40
4-1-2磁膜長寬比、線寬對磁感測元件的影響 48
4-1-3間隔層Cu厚度對於磁感測元件的影響 52
4-1-4多層堆疊對於磁感測元件的影響 59
4-2測試類自旋閥FeCoNi/ FeCo/ Cu/ FeCo/ FeCoNi膜層結構 67
4-3磁感測元件靈敏度比較 69
第五章、結論 70
參考文獻 73
[1] R. Hunt, “A magnetoresistive readout transducer,” IEEE Transactions on Magnetics, vol. MAG-7, pp. 150-154, 1971.
[2] C. Tsang, R. E. Fontana, T. Lin, D. E. Heim, V. S. Speriosu, B. A. Gurney, and M. L. Williams, “Design, fabrication & testing of spin-valve read heads for high density recording,” IEEE Transactions on Magnetics, vol. 30, pp. 3801-3805, 1994.
[3] C. H. Smith, “Commercial applications of spintronics technology: magnetic sensing, data coupling, and MRAM,” Nanomaterials 2004 Nanoelectronics, Nanophotonics and Nanomagnetics Conference, Stamford, Conn, 2004.
[4] J. Daughton, J. Brown, E. Chen, R. Beech, A. Pohm, and W. Kude, “Magnetic field sensors using GMR multilayer,” IEEE Transactions on Magnetics, vol. 30, pp. 512-514, 1994.
[5] I. Genish, Y. Kats, L. Klein, J. W. Reiner, and M. R. Beasley, “Paramagnetic anisotropy magnetoresistance in thin films,” Journal of Applied Physics, vol. 95, pp. 6681-6683, 2004.
[6] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic muperlattices,” Physical Review Letters, vol. 61, pp. 2472-2475, 1988.
[7] B. Dieny, V. S. Speriosu, B. A. Gumey, S. S. P. Parkin, D. R. Wilhoit, K. P. Roche, S. Metin, D. T. Peterson, and S. Nadimi “Spin-valve effect in soft ferromagnetic sandwiches,” Journal of Magnetism and 9Magnetic Materials, vol. 93, pp. 101-104, 1991.
[8] F. Giesen, J. Podbieski, T. Korn, M. Steiner, A. van Staa, and D. Grundler, “Hysteresis and control of ferromagnetic resonances in rings,” Applied Physics Letters, vol. 86, pp. 112510, 2005.
[9] H. Mutoh, H. Kanai, J. Okamoto, Y. Ohtsuka, T. Sugawara, J. Koshikawa, J. Toda, Y. Uematsu, M. Shinohara, and Y. Mizoshita, “5 Gb/in2 recording demonstration with NiFe/Co90 Fe10 spin-valve heads and low-noise thin-film disks,” IEEE Transactions on Magnetics, vol. 32, pp. 3314-3916, 1996.
[10] A. M. Zeltser, K. Pentek, M. Menyhard, and A. Sulyok, “Thermal stability of CoFe, Co and NiFe/Co spin valves,” IEEE Transactions on Magnetics, vol. 34, pp. 1417-1419, 1998.
[11] J. C. S. Kools, “Exchange-biased spin-valves for magnetic storage,” IEEE Transactions on Magnetics, vol. 32, pp. 3165-3185, 1996.
[12] B. B. Dieny, V. S. Speriosu, S. Metin, S. S. P. Parkin, B. A. Gurney, P. Baumgart, and D. FL Wilhoit, “Magnetotransport properties of magnetically soft spin-valve structures,” Journal of Applied Physics, vol. 69, pp. 4774-4779, 1991.
[13] R. Nakatani, H. Hoshiya, K. Hoshino, S. Noguchi, and Y. Sugita, “Magnetoresistance effects of Fe-Mn/Ni-Fe-Co/(Au, Ag, Al)/Ni-Fe-Co sandwiches,” Japanese Journal of Applied Physics, vol. 34, pp. 2312-2317, 1995.
[14] J. M. Daughton, and Y. J. Chen, “GMR materials for low field applications,” IEEE Transactions on Magnetics, vol. 29, pp. 2705-2710, 1993.
[15] C. González, and R. E. Parra, “Magnetic moment correlations in transition metal alloys determined by neutron scattering,” Journal of Applied Physics, vol. 81, pp. 4192, 1997.
[16] T. Lin, D. Mauri, N. Staud, C. Hwang, and J. K. Howard, “Improved exchange coupling between ferromagnetic Ni-Fe and antiferromagnetic Ni-Mn-based films,” Applied Physics Letters, vol. 65, pp. 1183-1185, 1994.
[17] K. Yagami, M. Tsunoda, and M. Takahashi, “Enhancement of exchange bias in Mn–Ir/Co–Fe based spin valves with an ultrathin Cu underlayer and in situ Mn–Ir surface modification,” Journal of Applied Physics, vol. 89, pp. 6609, 2001.
[18] S. S. P. Parkin, R. F. C. Farrow, R. F. Marks, A. Cebollada, G. R. Harp, and R. J. Savoy, “Oscillations of interlayer exchange coupling and giant magnetoresistance in (111) oriented permalloy/Au multilayers,” Physics Review Letters, vol. 72, pp. 3178-3712, 1994.
[19] W. E. Bailey, S. X. Wang, and E. Y. Tsymbal, “Electronic scattering from Co/Cu interfaces: In situ measurement and comparison with theory,” Physics Review B, vol. 61, pp. 1330-1335, 2000.
[20] H. sakakima, M. Satomi, Y. Sugita, and Y. Kawawake, “Enhancement of MR ratios using thin oxide layers in PtMn and α -Fe2O3-based spin valves,” Journal of Magnetism and Magnetic Materials, vol. 210, pp. L20-L24, 2000.
[21] K. Miyashita, T. Tadahashi, and M. Yamanaka, “Features of a magnetic rotary encoder,” IEEE Transactions on Magnetics, vol. MAG-23, pp. 2182-2184, 1987.
[22] Y. Kamiguchi, H. Yuasa, H. Fukuzawa, K. Koui, H. Iwasaki, and M. Sahashi, “CoFe specular spin valves with a nano oxide layer,” Magnetics Conference, 1999. Digest of INTERMAG 99. 1999 IEEE International, pp. DB01, 1999.
[23] M. Mao, C. Cerjan, and J. Kools, "Physical properties of spin-valve films grown on naturally oxidized metal nano-oxide surfaces," Journal of Applied Physics, vol. 91, pp. 8560-8562, 2002.
[24] T. Mizuguchi, and H. Kano, “Characteristics of spin-valve films with non-magnetic oxide layers for specular-scattering,” IEEE Transactions on Magnetics, vol. 37, pp. 1742-1744, 2001.
[25] Dieny, P. Humbert, V. S. Speriosu, S. Metin, B. A. Gurney, P. Baumgart, and H. Lefakis, “Giant magnetoresistance of magnetically soft sandwiches: Dependence on temperature and on layer thicknesses,” Physics Review B, vol. 45, pp. 806-813, 1992.
[26] B. A. Everitt, A. V. Pohm, and J. M. Daughton, “Size dependence of switching thresholds for pseudo spin valve MRAM cells,” Journal of Applied Physics, vol. 81, pp. 4020-4022, 1997.
[27] D. Wang, J. Brown, T. Hazelton, and J. Daughton, “360° Angle sensor using spin valve materials with SAF Structure,” IEEE Transactions on Magnetics, vol. 42, pp. 3700-3702, 2005.
[28] S. Tumanski, “Induction coil sensors-a review,” Measurement Science and Technology, vol. 18, pp. 16, 2007.
[29] 維基百科,http://wikipedia.tw/.
[30] C.R. Tamanaha, S.P. Mulvaney, J.C. Rife, and L.J. Whitman, “Magnetic labeling, detection, and system integration,” Biosensors and Bioelectronics, vol. 24, pp. 1-13, 2008.
[31] NVE corporation,http://www.nve.com/index.php.
[32] W. Z. Hsieh, Magnetization reversal in nano-scale mgnetic thin films, Master thesis, Department of Physics, National Changhua University of Education, 2001.
[33] Hartmann, “Magnetic multilayers and giant magnetoresistance : fundamentals and industrial applications,” Springer, 1999.
[34] S. Mao,J. Giusti, N. Amin, J. V. ek, and E. Murdock, “Giant magnetoresistance properties of patterned IrMn exchange biased spin valves,” Journal of Applied Physics, vol. 85, pp. 6112, 1999.
[35] T. Masafumi, I. Satoru, M. Eiji, and O. Akihiko, “Thermal degradation of spin valve multilayers caused by Mn migration,” Journal of Applied Physics, vol. 87, pp. 2469-2471, 2000.
[36] Z. H. Qian, D. Wang, J. M. Daughton, M. Tondra, C. Nordman, and A. Popple, “Linear Spin-Valve Bridge Sensing Devices,” IEEE Transactions on Magnetics, vol. 40, pp. 4643-4645, 2004.
[37] J.R. Rhee, J.Y. Hwang, M.Y. Kim, S.S. Lee, “Cu Thickness Dependence of Interlayer Coupling for Free Layer on NiMn Alloy-Pinned Spin Valve Films,” physica status solidi, Vol. 189, pp. 669–672, 2002.
[38] M. Ramasubramanian, C. Bonhôte, E. Velasco, E. I. Cooper, and L. T. Romankiw, “Electroplated High Moment CoNiFe,” K2 - Seventh International Symposium on Magnetic Materials, Processes and Devices, Utah, Salt lake city, 2002.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *