帳號:guest(3.21.76.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):童資芸
論文名稱(中文):磁性奈米線之熱傳性質研究
論文名稱(外文):Thermal Conductivity of Magnetic Nanowires
指導教授(中文):賴梅鳳
學位類別:碩士
校院名稱:國立清華大學
系所名稱:奈米工程與微系統研究所
學號:9735519
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:71
中文關鍵詞:熱傳導係數電阻率勞倫茲常數
外文關鍵詞:thermal conductivityelectrical resistivityLorenz number
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,由於自旋電子元件的蓬勃發展,像是硬碟磁頭、磁阻式隨機存取記憶體等,磁性材料的研究越趨重要。在奈米尺度下,很多的物理性質會受到改變,為了了解磁性奈米線不同於塊材的熱傳導,本文將研究磁性奈米線隨磁場和溫度變化的熱傳導係數。
磁性結構主要使用電子束微影以及電子槍鍍膜系統來製作,接著使用四點量測方法測量結構磁阻變化,最後利用樣品本身加電流發熱及電阻檢溫的方法得到結構的熱傳導係數。
在磁場的影響下,鎳線的熱傳導係數明顯的下降,而電阻率卻沒有改變,因此,發現在磁場中,磁振子受到磁場抑制的影響,磁性材料的勞倫茲數隨著磁場明顯的下降,打破了威德曼-法蘭茲定律。
In recent years, due to the rapid development of spintronic devices such as hard drive heads, magnetic random access memory, etc., research of magnetic materials become more important. In nanoscaled some of materials properties is different. In this thesis, we study the relationship between thermal conductivity and magnetic field and that between temperature of nickel nanowires.
Nano-scaled magnetic structures are fabricated by using e-beam lithography and e-beam evaporation system. The thermal conductivity of the structures is measured by electrical resistance thermometry on self-heated structure.
The thermal conductivity of the structures decrease with magnetic field but the electron conductivity are all the same. The calculated Lorenz numbers (from the thermal and electrical conductivity data) of nickel nanowire decrease with magnetic field. We found a way to change Lorenz number and broken the Wiedemann-Franz law.
摘要 II
Abstract III
致謝 IV
目錄 V
圖、表目錄 VII
第一章、 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 研究方法 3
第二章、 理論基礎與文獻回顧 4
2.1 熱傳導係數 4
2.1.1 電子的熱傳導 5
2.1.2 晶格振盪-聲子 8
2.1.3 聲子的熱傳導 10
2.1.4 自旋波 16
2.2 熱傳導係數之測量 19
2.2.1 熱傳導係數之直接量測 19
2.2.2 熱傳導係數之間接量測 21
2.2.3 自發熱、電阻檢溫熱傳導係數量測 24
2.2.4 奈米線的熱傳導性質 26
第三章、 研究方法 34
3.1 磁性結構製作 34
3.2 磁阻測量 38
3.3 電阻溫度係數量測 39
3.4 熱傳導係數量測 40
3.4.1 熱傳導係數隨磁場變化的量測 40
3.4.2 熱傳導係數隨溫度變化的量測 42
第四章、 結果與討論 45
4.1 懸空奈米線樣品結構 45
4.2 奈米線磁阻量測 46
4.3 奈米線電阻溫度係數 50
4.4 懸空奈米線熱傳導係數 51
4.4.1. 熱傳導係數隨磁場的變化 52
4.4.2. 熱傳導係數隨溫度的變化 58
第五章 結論 64
參考文獻 66
[1] E. Pop, S. Sinha, and K. E. Goodson, "Heat Generation and Transport in Nanometer-Scale Transistors," Proceedings of the IEEE 94, 1587-1601 (2006).
[2] M. N. Baibich, J. M. Broto, A. Fert, F. N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, "Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices," Physical Review Letters 61, 2472-2475 (1988).
[3] G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, "Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange," Physical Review B 39, 4828-4830 (1989).
[4] C. Chappert, A. Fert, and F. N. V. Dau, "The emergence of spin electronics in data storage," Nature Materials 6, 813-823 (2007).
[5] J. G. Zhu, Y. Zheng, and G. A. Prinz, "Ultrahigh density vertical magnetoresistive random access memory," Journal of Applied Physics 87, 6668-6673 (2000).
[6] S. S. P. Parkin, M. Hayashi, and L. Thomas, "Magnetic
domain-wall racetrack memory," Science 320, 190-194 (2008).
[7] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, "Spintronics: A spin-based electronics vision for the future," Science 294, 1488-1495 (2001).
[8] I. Zutic, J. Fabian, and S. Das Sarma, "Spintronics: Fundamentals and applications," Reviews of Modern Physics 76, 323-410 (2004).
[9] R. Berman, "Thermal Conduction in Solids, " 1976.
[10] 陳盈君, "奈米磁性薄膜的熱傳性質研究,"碩士論文,(2008).
[11] D. Li, Y. Wu, Philip Kim, Li Shi, Peidong Yang, and Arun Majumdar, "Thermal conductivity of individual silicon nanowires," Applied Physics Letters 83, 2934-2936 (2003).
[12] C. J. Glassbrenner, and G. A. Slack, "thermal conductivity of silicon and germanium from 3 K to the melting point," Phys. Rev. 134, A1058–A1069 (1964).
[13] W. B. Yelon, and L. Berger, "Magnon heat conduction and magnon-electron Scattering in Fe-Ni alloys," Physical Review Letters 25, 1207 (1970).
[14] W. B. Yelon, and L. Berger, "Magnon heat conduction and magnon scattering processes in Fe-Ni Alloys," Physical Review B 6, 5 (1972).
[15] B. M. Zawilski, R. T. Littleton, and T. M. Tritt, "Description of the parallel thermal conductance technique for the measurement of the thermal conductivity of small diameter samples," Review of Scientific Instruments 72, 1770-1774 (2001).
[16] Y. Yang, and M. Asheghi, "Temperature mapping of metal Interconnects using scanning thermoreflectance microscope," 21st IEEE Semi-therm Symposium, (2005).
[17] D. G. Cahill, "Thermal conductivity measurement from 30 to 750 K: The 3 omega method," Review of Scientific Instruments 73, 3701-3701 (2002).
[18] D. G. Cahill, and R. O. Phol, "Thermal conductivity of amorphous solids above the plateau," Physical Review B 35, 4067-4073 (1987).
[19] L. Lu, W. Yi, and D. L. Zhang, "3 omega method for specific heat and thermal conductivity measurements," Review of Scientific Instruments 72, 2996-3003 (2001).
[20] W. Liu, and M. Asheghi, "Phonon-boundary scattering in ultrathin single-crystal silicon layers," Applied Physics Letters 84, 3819-3821 (2004).
[21] W. Liu, and M. Asheghi, "Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures," Journal of Applied Physics 98, 123523 (2005).
[22] W. Liu, and M. Asheghi, "Thermal conductivity measurements of ultra-thin single crystal silicon layers," Journal of Heat Transfer-Transactions of the Asme 128, 75-83 (2006).
[23] 谢华清, 奚同庚, "低維材料熱物理,"上海科學技術學院出版社, (2008)
[24] P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, "Thermal transport measurements of individual multiwalled nanotubes," Physical Review Letters 87, 215502 (2001).
[25] R. Sultan, A. D. Avery, G. Stiehl, and B. L. Zink, " Thermal conductivity of micromachined low-stress silicon-nitride beams from 77 to 325 K," Journal of Applied Physics 105, 043501 (2009).
[26] M. N. Ou, T. J. Yang, S. R. Harutyunyan, Y. Y. Chen, C. D.Chen, and S. J. Lai, "Electrical and thermal transport in single nickel nanowire," Applied Physics Letters 92, 063101 (2008).
[27] B. L. Zink, A. D. Avery, R. Sultan, D. Bassett, and M. R. Pufall, "Exploring thermoelectric effect and Wiedemann-Franz violation in magnetic nanostructure via micromachined thermal platforms," Solid Communications 150, 514-518 (2010).
[28] C. S. Lue, C. N. Kuo, D. S. Tasi, Y. K. Kuo, Zhangzhen He and Mitsuru Itoh, "Magnon-mediated thermal conductivity in the dimerized spin-gap compound BaCu2V2O8," Physical Review B, 78, 012406 (2008)
[29] C. Hess, C. Baumann, U. Ammerahl, B, Buchner, F. Heidrich-Meisner, W. Brening, and A. Revcolevschi, "Magnon heat transport in (Sr, Ca, La)14Cu24O41," Physical Review B, 64, 184305 (2008)
[30] Z. K. Wang, M. H. Kuok, S. C. Ng, D. J. Lockwood, M. G. Cottam, K. Nielsch, R. B. Wehrspohn, and U. Gösele, " Spin-wave quantization in ferromagnetic nickel nanowires," Physical Review Letters 89, 027201 (2002).
[31] C. Reale, "Conductivity data for the transition metals derivedfrom considerations on the charge transport in thin films," J. Phys. F: Metal Phys 4, 2218 (1974).
(此全文未開放授權)
電子全文
中文摘要
英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *