帳號:guest(3.17.75.227)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳建豪
作者(外文):Chen, Chien-Hao
論文名稱(中文):應用功率半導體模組建構之實驗型微電網系統
論文名稱(外文):DEVELOPMENT OF AN EXPERIMENTAL MICRO-GRID SYSTEM USING POWER SEMICONDUCTOR MODULES
指導教授(中文):廖聰明
指導教授(外文):Liaw, Chang-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9761508
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:116
中文關鍵詞:微電網直流/直流轉換器變頻器單相三線交流波形控制強健控制數位控制非線性負載儲能系統電池超級電容
外文關鍵詞:Micro-gridDC/DC converterinvertersingle-phase three-wireAC waveformrobust controldigital controlnonlinear loadenergy storage systembatterysupercapacitor
相關次數:
  • 推薦推薦:0
  • 點閱點閱:139
  • 評分評分:*****
  • 下載下載:22
  • 收藏收藏:0
本論文旨在開發一使用兩個 IGBT 功率模組建構之實驗型微電網系統。其中一功率模組用以組立一單相三線式220V/110V 負載變頻器,第二模組之三個臂分別安排建構主電源之升壓型轉換器與多種儲能設備之介面轉換器。
首先,主電源如太陽能電池、燃料電池或開關式磁阻發電機經單象限直流/直流升壓型轉換器建立400V 之共同直流匯流排。超電容組與電池組分別經由雙向直流/直流轉換器介接至共同直流匯流排以從事充放電操作。所有直流/直流轉換器皆採行簡易強健控制以得到良好調節及強健之直流輸出電壓。
最後,建構後級單相三線式負載變頻器,由400V直流匯流排電壓轉換輸出220V/110V之單相交流電壓。在電路架構上,由IGBT模組之兩外臂提供220V電壓輸出,而兩組110V輸出之平衡係由中間臂之切換維持。在控制方面,本文提出一主差模控制器及一僕共模控制器,以從事220V與110V輸出電壓波形之控制。並提出一簡單強健控制,使變頻器於系統參數變動及未知非線性負載下具有良好之110V/220V輸出弦波電壓波形。所建微電網系統之操作控制將適當安排,並以一些實測結果驗證其整體系統操控性能。
This thesis presents the development of an experimental micro-grid system using two insulated gate bipolar transistor (IGBT) modules. While a module is employed to
construct a single-phase three-wire (1P3W) 220/110V inverter, the legs in another module are arranged to form the main source voltage boosting converter and the interfacing converters for various energy storage devices.
First, the 400V common DC grid is established by a single-quadrant DC/DC boost converter from the main source, such as photovoltaic cell, fuel cell, or switched-reluctance generator. Then a supercapacitor bank and a battery bank are respectively interfaced to the common DC grid via its bi-directional DC/DC converter for making discharging and charging works. The simple robust control is applied to yield well-regulated and robust DC output voltages of all DC-DC converters.
Finally, a followed 1P3W inverter is developed to yield 220V/110V AC outputs from the 400V DC grid. In schematic configuration, the outer two legs of an IGBT module are
arranged to produce the 220V-voltage output, and the remaining center leg is in charge of switching control to yield two balanced 110V-voltage outputs. In control aspect, a master and a slave control schemes are proposed to respectively handle the 220V and 110V output waveform controls. The simple robust control approach is proposed to yield good inverter sinusoidal 110V/220V output waveforms under varied system parameters and unknown nonlinear loads. The system operation control of the developed micro-grid system is properly arranged. And the whole system operating performance is assessed experimentally.
CHAPTER 1 INTRODUCTION
1.1 Motivation
1.2 Literature Survey
1.3 Organization of this Thesis

CHAPTER 2 INTRODUCTION TO MICRO-GRID AND INTERFACTING
POWER CONVERTTERS
2.1 Introduction
2.2 Typical Micro-Grid Systems
2.3 Distributed and Renewable Sources
2.4 Some Interfacing DC-DC Converters of Micro-Grid System
2.5 Inverters for Micro-Grid System
2.5.1 Single-Phase Sinusoidal PWM (SPWM) Inverters
2.5.2 Three-Phase SPWM Inverter
2.5.3 Some Practical Issues
2.5.4 Multi-Level Modular Inverters

CHAPTER 3 ESTABLISHMENT OF COMMON DC GRID FROM MAIN
ENERGY SOURCE
3.1 Introduction
3.2 Practical Considerations of DSP-Based Digital Control
3.3 Some Existing DC-DC Converters
3.4 Establishment of Common DC Grid

CHAPTER 4 AN ENERGY STORAGE SYSTEM CONSISTING OF
SUPERCAPACITOR AND BATTERY DEVICES
4.1 Introduction
4.2 Overviews of Supercapacitor, Lithium-ion Battery and Battery Voltage Boosting Circuit
4.3 The Established Energy Storage System
4.4 Simulated and Experimental Results

CHAPTER 5 DEVELOPMENT OF A SINGLE-PHASE THREE-WIRE
LOAD INVERTER
5.1 Introduction
5.2 System Configuration and Control Scheme
5.3 The Proposed Unified Robust Tracking Error Cancellation
Control Methodology
5.4 Experimental and Simulated Performance Evaluation

CHPATER 6 PERFORMANCE EVALUATION OF THE ESTABLISHED
WHOLE MICRO-GRID SYSTEM
6.1 Introduction
6.2 System Configuration of the Established Micro-Grid System
6.3 Experimental Evaluation of the Whole Micro-grid System
6.4 System Configuration and Experimental Result of SRG Fed
1P3W Inverter

CHAPTER 7 CONCLUSIONS
A. Distributed Power and Micro-Grid Systems
[1] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC Micro-grid for super high quality distribution-system configuration and control of distributed generations and energy storage devices,” in Proc. IEEE PESC, 2006, pp. 1-7.
[2] P. Biczel, “Power electronic converters in DC microgrid,” in Proc. IEEE CPE, 2007, pp. 1-6.
[3] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgids,” IEEE Power Energy, vol. 5, no. 4, pp. 78-94, 2007.
[4] H. Hakigano, Y. Miura and T. Ise, “Configuration and control of a DC microgrid for residential houses,” in Proc. IEEE T&D Asia, 2009, pp. 1-4.
[5] S. Morozumi, “Micro-grid demonstration projects in Japan,” in Proc. IEEE PCCON, 2007, pp. 635-642.
[6] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC voltage control of the DC micro-grid for super high quality distribution,” in Proc. IEEE PCCON, 2007, pp.
518-525.
[7] M. S. Khan and M. R. Iravani, “Supervisory hybrid control of a micro grid system,”in Proc. IEEE EPC, 2007, pp. 20-24.
[8] T. S. Weerakoon, S. A. Kurera and A. Arulampalam, “Voltage source converters to improve the operation of the micro-grid,” in Proc. IEEE ICIIS, 2008, pp. 1-6.
[9] L. Sovannarith and N. Hoonchareon, “Stability of the micro-grid with wind power generation,” in Proc. IEEE ICSET, 2008, pp. 1087-1092.
[10] D. Kundu, “An overview of the distributed generation (DG) connected to the GRID,”
in Proc. IEEE ICPST, 2008, pp. 1-8.
[11] S. Chakraborty and M. G. Simoes, “Experimental evaluation of active filtering in a single-phase high-frequency AC microgrid,” IEEE Trans. Energy Convers., vol. 24, no. 3, pp. 673-682, 2009.
[12] S. Heier, Grid Integration of Wind Energy Conversion Systems, 2nd Ed., John Wiley &
Sons Ltd, New York, 1998.
[13] J. A. Baroudi, V. Dinavahi and A. M. Knight, “A review of power converter topologies for wind generators,” in Proc. IEEE IEMDC, 2005, pp. 458-465.
[14] T. Ackermann, Wind power in power systems, John Wiley & Sons Ltd, New York, 2005.
[15] G. M. Master, Renewable and Efficiency Electric Power Systems, John Wiley, 2004.
[16] J. T. Bialasiewicz, “Renewable energy systems with photovoltaic power generators: operation and modeling,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2752-2758,
2008.

B. Bi-directional DC-DC Converters and Front-End Converters
[17] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
[18] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
[19] M. Jain, Jain, P.K. and M. Daniele, “Analysis of a bi-directional DC-DC converter topology for low power application,” in Proc. IEEE CCECE, 1997, vol.2, pp.
548-551.
[20] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
[21] H. Li, F. Z. Peng and J. Lawler, “A study of modeling and simulation for soft-switched bi-directional DC-DC converters,” in Proc. IEEE CIPE, 2000, pp. 68-73.
[22] S. A. Bock, J. R. Pinheiro, H. Grundling, H. L. Hey and H. Pinheiro, “Existence and stability of sliding modes in bi-directional DC-DC converters,” in Proc. IEEE PESE,
2001, vol.3, pp. 1277-1282.
[23] P. Vijayraghavan and R. Krishnan, “Front-end buck converter topology for SRM drives-design and control,” in Proc. IEEE IECON, 2003, pp. 3013-3018.
[24] H. Xu, G. Ma, C. Sun, X. Wen and L. Kong, “Implementation of a bi-directional DC-DC converter in FCEV,” in Proc. ICEMS, 2003, vol. 1, pp. 375-378.
[25] M. Cacciato, F. Caricchi, F. Giuhlii and E. Santini, “A critical evaluation and design of bi-directional DC/DC converters for super-capacitors interfacing in fuel cell
applications,” in Proc. IEEE IAS, 2004, vol. 2, no.2, pp. 1127-1133.
[26] K. P. Yalamanchili and M. Ferdowsi, “Review of multiple input DC-DC converters for electric and hybrid vehicles,” in Proc. IEEE Vehicle Power and Propulsion Conf., 2005, pp. 552-555.
[27] J. Leuchter, P. Bauer, P. Bojda and V. Rerucha, “Bi-directional DC-DC converters for supercapacitor based energy buffer for electrical gen-sets,” in Proc. ECPEA, 2007, pp. 1-10.
[28] C. Zhao, S. D. Round and J. W. Kolar, “An isolated three-port bidirectional DC-DC converter with decoupled power flow management,” IEEE Trans. Power Electron.,
vol. 23, no. 5, pp. 2443-2453, 2008.
[29] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24,
no. 6, pp. 1437-1443, 2009.
[30] Y. Du, X. Zhou, S. Bai, S. Lukic and A. Huang, “Review of non-isolated bi-directional DC-DC converters for plug-in hybrid electric vehicle charge station
application at municipal parking decks,” in Proc. APEC, 2010, pp. 1145-1151.
[31] Z. Qian, O. Abdel-Rahman and I. Batarseh, “An integrated four-port DC/DC converter for renewable energy applications,” IEEE Trans. Power Electron., vol. 25,
no. 7, pp. 1877-1887, 2010.

C. Energy Storage Systems
[32] K. Harada, E. Sakai, H. Hyakutake, G. Ariyoshi and K. Yamasaki, “Power systems with cold stand-by using ultra capacitors,” in Proc. INTELEC, 1998, pp. 498-504.
[33] L. Zubieta and R. Bonert, “Characterization of double-layer capacitors (DLCs) for power electronics applications,” in Proc. IAS, 1998, vol. 2, pp.1149-1154.
[34] J. P. Zheng, T. R. Jow and M. S. Ding, “Hybrid power sources for pulsed current applications,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 1, pp. 288-292, 2001.
[35] T. A. Nergaard, J. F. Ferrell, L. G. Leslie and J. S. Lai, “Design considerations for a 48 V fuel cell to split single phase inverter system with ultracapacitor energy storage,” in Proc. PESC, 2002, pp. 2007-2012.
[36] R. A. Dougal, S. Liu and R. E. White, “Power and life extension of battery-ultracapacitor hybrids,” IEEE Trans. Components and Packaging Technologies, vol. 25, no. 1, pp. 120-131, 2002.
[37] L. Shengyi and R. A. Dougal, “Design and analysis of a current-mode controlled battery/ultracapacitor hybrid,” in Proc. IEEE IAS, 2004, vol. 2, pp. 1140-1145.
[38] J. Locker and T. Wolfe, “Development of an ultracapacitor-based intermediate energy storage system,” in Proc. IEEE Pulsed Power Conf., 2005, pp. 1337-1340.
[39] L. Gao, R. A. Dougal and S. Liu, “Power enhancement of an actively controlled battery/ultracapacitor hybrid,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 236-243, 2005.
[40] M. E. Glavin and W. G. Hurley,“Ultracapacitor/battery hybrid for solar energy
storage,” in Proc. UPEC, 2007, pp. 791-795.
[41] D. L. Cheng and M. G. Wismer, “Active control of power sharing in a battery/ultracapacitor hybrid source,” in Proc. IEEE Ind. Electron., 2007, pp. 2913-2918.
[42] Di Lu, Tao Zhou, H. Fakham and B. Francois, “Design of a power management system for an active PV station including various storage technologies,” in Proc. EPE-PEMC, 2008, pp. 2142-2149.
[43] F. S. Garcia, A. A. Ferreira and J. A. Pomilio, “Control strategy for battery-ultracapacitor hybrid energy storage system,” in Proc. IEEE APEC, 2009, pp. 826-832.
[44] P. Thounthong, S. Rael and B. Davat, “Analysis of supercapacitor as second source based on fuel cell power generation,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 247-255, 2009.
[45] A. W. Stienecker, T. Stuart and C. Ashtiani, “A combined ultracapacitor-lead acid battery storage system for mild hybrid electric vehicles,” in Proc. IEEE VPPC, 2005, pp. 350-355.
[46] S. M. Lukic, S. G. Wirasingha, F. Rodriguez, C. Jian and A. Emadi, “Power management of an ultracapacitor/battery hybrid energy storage system in an HEV,”in Proc. IEEE VPPC, 2006, pp. 1-6.
[47] L. Shuai, K. A. Corzine and M. Ferdowsi, “A new battery/ultracapacitor energy storage system design and its motor drive integration for hybrid electric vehicles,” IEEE Trans. Vehicular Tech., vol. 56, no. 4, pp. 1516-1523, 2007.
[48] M. Ortuzar, J. Moreno and J. Dixon, “Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147-2156, 2007.
[49] J. Bauman and M. Kazerani, “A comparative study of fuel-cell–battery, fuel-cell–ultracapacitor, and fuel-cell-battery-ultracapacitor vehicles,” IEEE Trans. Veh. Technol., vol. 57, no. 2, pp. 760-769, 2008.
[50] J. J. Awerbuch and C. R. Sullivan, “Control of ultracapacitor-battery hybrid power
source for vehicular applications,” in Proc. IEEE Energy Conf., 2008, pp. 1-7.
[51] A. B. Cultura and Z. M. Salameh, “Performance evaluation of a supercapacitor module for energy storage applications,” in Proc. PES, 2008, pp. 1-7.
[52] R. Carter and A. Cruden, “Strategies for control of a battery/supercapacitor system in an electric vehicle,” in Proc. SPEEDHAM, 2008, pp. 727-732.
[53] C. Jian and A. Emadi, “A new battery/ultra-capacitor hybrid energy storage system for electric, hybrid and plug-in hybrid electric vehicles,” in Proc. IEEE VPPC, 2009,
pp. 941-946.
[54] L. Zhihao, O. Onar, A. Khaligh, E. Schaltz, “Design and control of a multiple input
DC/DC converter for battery/ultra-capacitor based electric vehicle power system,” in Proc. IEEE APEC, 2009, pp. 591-596.
[55] V. A. Shah, G. S. Karndhar, R. Maheshwari, P. Kundu and H. Desai, “An energy management system for a battery ultracapacitor hybrid electric vehicle,” in Proc.
ICIIS, 2009, pp. 408-413.
[56] S. M. Halpin, R. L. Spyker, R. M. Nelms and R. F. Burch, “Application of
double-layer capacitor technology to static condensers for distribution system voltage control,” IEEE Trans. Power Systems, vol. 11, no. 4, pp. 1899-1904, 1996.
[57] A. Abedini and A. Nasiri, “Applications of super capacitors for PMSG wind turbine power smoothing,” in Proc. IEEE IECON, 2008, pp. 3347-3351.
[58] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC micro-grid for super high quality Distribution - system configuration and control of distributed generations and energy Stostorage devices - ,” in Proc. IEEE PESC, 2006, pp. 1-7.
[59] H. Kakigano, Y. Miura, T. Ise and R. Uchida, “DC voltage control of the DC micro-grid for super high quality distribution,” in Proc. IEEE PCCON, 2007, pp. 518-525.

D. Inverters and PWM Switching Methods
[60] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, 1st ed. New York: John Wiley & Sons, 2003.
[61] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters: Principles and Practice, IEEE Press, 2003.
[62] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Massachusetts: SCI-TECH, 2001.
[63] B. K. Bose, Modern Power Electronics and AC Drive, 2nd ed. New Jersey:
Prentice-Hall, 2002.
[64] B. S. Prasad, S. Jain and V. Agarwal,“Universal single-stage grid-connected inverter,”IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
[65] X. Yaosuo, C. Liuchen and S. Pinggang, “Recent developments in topologies of single-phase buck-boost inverters for small distributed power generators: an overview,” in Proc. IPEMC, 2004, vol. 3, pp. 1118-1123.
[66] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
[67] Eunsoo Jung and Seung-Ki Sul, “Implementation of grid-connected single-phase inverter based on FPGA,” in Proc. IEEE APEC, 2009, pp. 889-893.
[68] F. Shinjo, K. Wada and T. Shimizu, “A single-phase grid-connected inverter with a power decoupling function,” in Proc. IEEE PESE, 2007, pp. 1245-1249.
[69] A. C. Kyritsis, E.C. Tatakis and N. P. Papanikolaou, “Optimum design of the current-source flyback inverter for decentralized grid-connected photovoltaic systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 281-293, 2008.
[70] Q. Li and P. Wolfs, “A review of the single phase photovoltaic module integrated converter topologies with three different DC link configurations,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1320-1333, 2008.
[71] C. Rodriguez and G. A. J. Amaratunga, “Long-lifetime power inverter for photovoltaic AC modules,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2593-2601, 2008.
[72] L. Mihalache,“DSP control method of single-phase inverters for UPS applications,”in Proc. IEEE APEC, 2002, vol. 1, pp. 590-596.
[73] T. Kerekes, R. Teodorescu and U. Borup, “Transformerless photovoltaic inverters connected to the grid,” in Proc. IEEE APEC, 2007, pp. 1733-1737.
[74] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE Proc. Electr. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
[75] H. Patel and V. Agarwal, “A single-stage single-phase transformer-less doubly grounded grid-connected PV interface,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 93-101, 2009.
[76] R. Gonzalez, E. Gubia, J. Lopez and L. Marroyo, “Transformerless single-phase multilevel-based photovoltaic inverter,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2694-2702, 2008.
[77] R. González, J. López, P. Sanchis and L. Marroyo, “Transformerless inverter for single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 693-697, 2007.
[78] J. Holtz, “Pulsewidth modulation: a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
[79] M. P. Kazmierkowskzi and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: A survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
[80] V. Blasko, “A novel method for selective harmonic elimination in power electronic equipment,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 223-228, 2007.
[81] S. R. Bowes and D. Holliday, “Optimal regular-sampled PWM inverter control techniques,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1547-1559, 2007.
[82] D. Czarkowski, D. V. Chudnovsky and I. W. Selesnick, “Solving the optimal PWM problem for single-phase inverters,” IEEE Trans. Circuits Syst. I, vol. 49, no. 4, pp. 465-475, 2002.
[83] A. M. Hava, R. J. Kerkman and T. A. Lipo, “A high-performance generalized discontinuous PWM algorithm,” IEEE Trans. Ind. Applicat., vol. 34, no. 5, pp. 1059-1071, 1998.
[84] K. M. Cho, W. S. Oh, Y. T. Kim and H. J. Kim, “A new switching strategy for pulse width modulation (PWM) power converters,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 330-337, 2007.
[85] M. J. Ryan, W. E. Brumsickle and R. D. Lorenz, “Control topology options for single-phase UPS inverters,” IEEE Trans. Ind. Applicat., vol. 33, no. 2, pp. 493-501, 1997.
[86] C. M. Liaw, W. C. Yu and T. H. Chen, “Random vibration test control of inverter-fed electrodynamic shaker,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 587-594, 2002.
[87] M. Ciobotaru, R. Teodorescu and F. Blaabjerg, “Control of single-stage single-phase PV inverter,” in Proc. EECPEA, 2005, pp. 1-10
[88] N. M. Abdel-Rahim and J. E. Quaicoe, “Analysis and design of a multiple feedback loop control strategy for single-phase voltage-source UPS inverters,” IEEE Trans. Power Electron., vol. 11, no. 4, pp. 532-541, 1996.
[89] H. Abe and H. Fujimoto, “Multirate prfect tracking control of single-phase inverter with inter sampling for arbitrary waveform,” in Proc. PCCON, 2007, pp. 810-815.
[90] C. Rech, H. Pinherio, H. A. Grundling, H. L. Hey and J. Pinheiro, “Analysis and design of a repetitive predictive-PID controller for PWM inverters,” in Proc. PESC, 2001, vol. 2, pp. 17-21.
[91] S. Okada, T. Nunokawa and T. Takeshita, “Digital control scheme of single-phase uninterruptible power supply,” in Proc. INTELEC, 2009, pp. 1-6.
[92] T. H. Chen and C. M. Liaw, “Vibration acceleration control of an inverter-fed electrodynamic shaker,” IEEE/ASME Trans. Mechatronics, vol. 4, no. 1, pp. 60-70, 1999.
[93] B. J. Kang and C. M. Liaw, “Robust hysteresis current-controlled PWM scheme with fixed switching frequency,” IEE Proc. Elect. Power Appt., 2001, vol. 148, no. 6, pp. 503-512.
[94] T. Senjyu, H. Kamifurutono and K. Uezato, “Robust current control method with disturbance voltage observer for voltage source PWM inverter,” in Proc. PEDS, 1995, pp. 379-384.
[95] J. Selvaraj and N. A. Rahim, “Multilevel inverter for grid-connected PV system employing digital PI controller,” IEEE Trans. Ind. Electron., vol. 56, no. 1, pp. 149-158, 2009.
[96] R. A. Mastromauro, M. Liserre and A. Dell'Aquila, “Study of the effects of inductor nonlinear behavior on the performance of current controllers for single-phase PV grid converters,” IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 2043-2052, 2008.
[97] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Linear current control scheme with series resonant harmonic compensator for single-phase grid-connected photovoltaic inverters” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2724-2733, 2008.
[98] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp.
4492-4500, 2009.
[99] C. Meza, J. J. Negroni, D. Biel and F. Guinjoan, “Energy-balance modeling and discrete control for single-phase grid-connected PV central inverters,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2734-2743, 2008.
[100] P. Sanchis, A. Ursæa, E. Gubía and L. Marroyo, “Boost DC-AC inverter: a new control strategy,” IEEE Trans. Power Electron., vol. 20, no. 2, pp. 343-353, 2005.
[101] R. A. Mastromauro, M. Liserre, T. Kerekes and A. Dell'Aquila, “A single-phase voltage-controlled grid-connected photovoltaic system with power quality conditioner functionality,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4436-4444, 2009.
[102] H. Pinheiro, A. S. Martins and J. R. Pinheiro, “A sliding mode controller in single phase voltage source inverters,” in Proc. IECON, 1994, pp. 394-398.
[103] Z. Yang and P. C. Sen, “A novel switch-mode DC-to-AC inverter with nonlinear robust control,” IEEE Trans. Ind. Electron., vol. 45, no. 4, pp.602-608, 1998.
[104] G. Alarcon, V. Cardenas, S. Ramirez, N. Visairo, C. Nunez, M. Oliver and H. Sira-Ramirez, “Nonlinear passive control with inductor current feedback for an UPS inverter,” in Proc. PESC, 2000, pp. 1414-1418.

E. Effects of DC-link Ripple and Output Filter
[105] W. Shireen and H. R. Nene, “DSP-based control for reliable fuel cell power systems with input ripple current compensation,” in Proc. PES General Meeting Conversation and Delivery of Electrical Energy, 2008, pp. 1-4.
[106] J. Sakly, P. Delarue and R. Bausiere, “Rejection of undesirable effects of input DC-voltage ripple in single-phase PWM inverters,” in Proc. IET EPA, 1993, vol. 4, pp. 65-70.
[107] P. N. Enjeti and W. Shireen, “A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms,” IEEE Trans. Power Electron., vol. 7, no. 1, pp. 65-70, 1993.
[108] P. A. Dahono, A. Purwadi and Qamaruzzaman, “An LC filter design method for single-phase PWM inverters,” in Proc. PEDS, 1995, vol. 2, pp. 571-576.
[109] H. Kim and K.H. Kim, “Filter design for grid connected PV inverters,” in Proc. ICSET, 2008, pp.1070-1075.
[110] J. Kim, J. Choi and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. ICPST, 2000, vol. 3, pp. 1659-1664.
[111] S. Vukosavic, L. Peric, E. Levi and V. Vuckovic, “Reduction of the output impedance
of PWM inverters for uninterruptible power supply,” in Proc. IEEE PESC, 1990, pp. 757-762.
[112] T.C.Y. Wang, Y. Zhihong, S. Gautam and Y. Xiaoming, “Output filter design for a grid-interconnected three-phase inverter,” in Proc. IEEE PESC, 2003, vol. 2, pp. 779-784.

F. Dead Time Compensation Control
[113] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683-689, 1999.
[114] R. C. Dodson, P. D. Evans, H. T. Yazdi and S.C. Harley, “Compensating for dead time
degradation of PWM inverter waveforms,” IEE Proc. Electr. Power Appl., vol. 137, no. 2, pp. 73-81, 1990.
[115] S. H. Hwang and J. M. Kim, “Dead time compensation method for voltage-fed PWM inverter,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 1-10, 2010.
[116] A. C. Oliveira, C. B. Jacobina and A. M. N. Lima, “Improved dead-time compensation for sinusoidal PWM inverters operating at high switching frequencies,”IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2295-2304, 2007.

G. Others
[117] Y. L. Yang, “Development and digital control of inverter systems with galvanic isolation and front-end SMR,” Master Thesis, Department of Electrical Engineering,
National Tsing Hua University, Hsinchu, ROC, 2008.
[118] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic
System, 4th ed. Prentice Hall Inc., 2002.
[119] “Digital signal controller TMS320F28335 datasheet,” http://www.ti.com/lit/gpn
/tms320f28335
[120] “Mitsubishi semiconductor CM100RL-12NF datasheet,” http://www.mitsubishichips.
com/Global/content/product/power/powermod/igbtmod/nf/cm100rl-12nf_e.pdf
[121] Y. C. Chang, “Development of a switched-reluctance generator and its application to
the establishment of microgrid system” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2010.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *