帳號:guest(3.137.187.121)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):姜智荃
作者(外文):Chiang, Chih-Chyuang
論文名稱(中文):低電壓高速度反及閘型唯讀記憶體
論文名稱(外文):Low Voltage and High Speed NAND-type ROM
指導教授(中文):張孟凡
指導教授(外文):Chang, Meng-Fan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9761549
出版年(民國):98
畢業學年度:98
語文別:英文
論文頁數:67
中文關鍵詞:唯讀記憶體碼反轉低電壓
外文關鍵詞:ROMCode-inversionLow Voltage
相關次數:
  • 推薦推薦:0
  • 點閱點閱:149
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
  唯讀記憶體是一種非揮發性記憶體,時常在內嵌式系統中,用來儲存大量固定資訊和系統程式。唯讀記憶體包含反或閘型和反及閘型兩種,反及閘型唯讀記憶體由於有較高密度但速度較慢,適合低速度的應用。當製成技術不停的演進,低電壓和高速度成為相當重要的設計目標,在低電壓下,反及閘型唯讀記憶體擁有比反或閘型唯讀記憶體更高的穩定性,因此設計一種在低電壓下仍有高操作速度的反及閘型唯讀記憶體有其必要性。

  在反及閘型唯讀記憶體的設計中,碼相關的讀取電流、位元線與反及閘串間的電荷分享、相鄰位元線間的串音效應和位元線漏電流限制了反及閘型唯讀記憶體的操作頻率和最低操作電壓。在過去的研究中,對於這些問題己經提出一些解決辦法。但有些方法會犧牲部份操作速度。

  在此篇論文中,我們提出碼反轉的方式,在不增加位元線漏電流的情況下,解決反及閘型唯讀記憶體讀取電流較小的問題。借由提高讀取電流和漏電流的比例,使電路能操作在更高的速度和更低的電壓。為了實現低電壓設計和提高電壓操作區域,我們使用動態源極線架構[1]降低電荷分享、串音效應和位址線漏電流的問題,並使用位址線追蹤架構[2]作為信號時間控制。

  我們使用90奈米互補式金氧半導體製程技術,製作兩顆256kb反及閘型唯讀記憶體晶片,一顆使用一般反及閘型唯讀記憶體電路的儲存架構,一顆使用提出的碼反轉的儲存方式。使用碼反轉的反及閘型唯讀記憶體晶片可以操作在1V到0.26V電壓區間,比不使用碼反轉的電路在低電壓下提高約25%的操作頻率,在0.3V操作電壓下仍有9MHz的操作速度。
Read-only memory(ROM) is a non-volatile memory which is commonly used in embedded system for large fix information storage and system program storage. ROM include NOR-type and NAND-type. NAND-type ROM is used for lower speed application due to high density but lower operation frequency. When process technology scaling to nanometer, low voltage and high speed deisgn become a main goal. Since NAND-type ROM has higher reliability in low voltage compare with NOR-type ROM, a low voltage and high speed NAND-type ROM is necessary.

Code-dependent cell current, charge sharing between bitline(BL) and NAND string, crosstalk and BL leakage in NAND-type ROM limit the operation frequency and minimum operation voltage(VDDmin). Previous studies have proposed some methods to solve these issues.

We proposed a code-inversion scheme to solve the problem of small read current in
NAND-type ROM. Operation frequency and minimum operation voltage is improved due to increase the on-off current ratio. To achieve low voltage design and high operation range, dynamic split sourceline scheme [1] is used in our design to reduce charge sharing, crosstalk and bitline leakage. BL tracking scheme [2] is used in our design for timing control.

A 256kb NAND-type ROM macros is implement in 90nmCMOS technology, which can operate from 1V to 0.26V, improving 25% operation frequency. The measurement result shows the propose scheme has 9MHz operation speed at 0.3V.
1 Introduction 1
2 Issues of NAND-type ROM 3
2.1 Comparison for NAND-type and NOR-type . . . . . . . . . . . . . . . 3
2.2 Conventional NAND-type ROM . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Structure and Operation . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Code-dependent Cell Current . . . . . . . . . . . . . . . . . . 9
2.2.3 Charge Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Crosstalk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 Bitline Leakage . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 On-off Current Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Proposed Scheme 24
3.1 Code-inversion Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.1 Single-bit Code-inversion . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Multi-bits Code-inversion . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Dual-path Data-out . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 On-to-Off Current Ratio Improvement . . . . . . . . . . . . . . . . . . 28
3.2.1 Code-inversion with Keeper . . . . . . . . . . . . . . . . . . . 28
3.2.2 Code-inversion with Sourceline Control . . . . . . . . . . . . . 30
3.2.3 Code-inversion with Dynamic Reference Voltage . . . . . . . . 32
3.3 Area Penalty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 NAND-type ROM area reduction . . . . . . . . . . . . . . . . 35
3.3.2 Flag-table area penalty . . . . . . . . . . . . . . . . . . . . . . 36
4 Macro Implementation 39
4.1 Macro Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.1 Conventional NAND-type ROM Architecture . . . . . . . . . . 39
4.1.2 Proposed NAND-type ROM Architecture . . . . . . . . . . . . 40
4.1.3 Flag-Table Structure . . . . . . . . . . . . . . . . . . . . . . . 41
4.1.4 Dual-path Sensing Output Scheme . . . . . . . . . . . . . . . . 43
4.1.5 Replica Bitline . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.6 Dynamic Virtual Guardian . . . . . . . . . . . . . . . . . . . . 45
4.1.7 Dynamic Split Sourceline . . . . . . . . . . . . . . . . . . . . 46
4.1.8 Dynamic Reference Voltage . . . . . . . . . . . . . . . . . . . 48
4.2 Macro Layout for Proposed NAND-type ROM . . . . . . . . . . . . . 49
4.3 Testchip Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5 Comparison and Experimental Results 51
5.1 Comparison with Conventional Design . . . . . . . . . . . . . . . . . . 51
5.2 Speed Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.1 Power Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.1 Test-chip Photo . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.3.2 Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3.3 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6 Conclusion 62
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
[1] C.-W. Liang and M.-F. Chang, “The Full Code-pattern Coverage Noise Immunity NAND-type ROM,” Master Dissertation, Department of Electrical Engineering, National Tsing Hua University, 2009.
[2] B. Amrutur and M. Horowitz, “A replica technique for wordline and sense control in low-power SRAM’s,” IEEE J. Solid-State Circuits, vol. 33, no. 8, pp. 1208–1219, Aug. 1998.
[3] G. Uhlmann, T. Aipperspach, T. Kirihata, K. Chandrasekharan, Y. Z. Li, C. Paone, B. Reed, N. Robson, J. Safran, D. Schmitt, and S. Iyer, “A Commercial Field-Programmable Dense eFUSE Array Memory with 99.999Yield for 45nm SOI
CMOS,” IEEE International Solid-State Circuits Conference (ISSCC), pp. 406–407, Feb. 2008.
[4] M.-F. Chang and S.-J. Shen, “A Process Variation Tolerant Embedded Split-Gate Flash Memory Using Pre-Stable Current Sensing Scheme,” IEEE J. Solid-State Circuits, vol. 44, no. 3, pp. 987–994, March 2009.
[5] H. Takahashi, S.Muramatsu, andM. Itoigawa, “A new contact programming ROM architecture for digital signal processor,” in IEEE Symposium on VLSI Circuits Dig. Papers, pp. 158–161, June 1998.
[6] R. Sasagawa, I. Fukushi, M. Hamaminato, and S. Kawashima, “High-speed cascade sensing scheme for 1.0 V contact-programming mask ROM,” in IEEE Symposium
on VLSI Circuits Dig. Papers, pp. 95–96, June 1999.
[7] M.-F. Chang, L.-Y. Chiou, and K.-A.Wen, “Crosstalk-insensitive via-programming ROMs using content-aware design framework,” IEEE Transactions on Circuits and
Systems II, vol. 53, no. 6, pp. 443–447, June 2006.
[8] M.-F. Chang and S.-M. Yang, “Analysis and Reduction of Supply Noise Fluctuations Induced by Embedded Via-Programming ROM,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 17, no. 6, pp. 758–769, June 2009.
[9] M. Seok, S. Hanson, J.-S. Seo, D. Sylvester, and D. Blaauw, “Robust ultra-low voltage ROM design,” in Proc. IEEE 2008 Custom Integrated Circuits Conference(CICC), Sept. 2008, pp. 423–426.
[10] D. Rich, K. Naiff, and K. Smalley, “A four-state ROM using multilevel process technology,” IEEE J. Solid-State Circuits, vol. 19, no. 2, pp. 174–179, Apr 1984.
[11] H. Kawagoe and N. Tsuji, “Minimum size ROM structure compatible with silicongate E/DMOS LSI,” IEEE J. Solid-State Circuits, vol. 11, no. 3, pp. 360–364, June 1976.
[12] R. Cuppens and L. Sevat, “A 256 kbit ROM with serial ROM cell structure,” IEEE J. Solid-State Circuits, vol. 18, no. 3, pp. 340–344, June 1983.
[13] S. Kamuro, Y. Masaki, K. Sano, and S. Kimura, “A 256K ROM fabricated using n-well CMOS process technology,” IEEE J. Solid-State Circuits, vol. 17, no. 4, pp. 723–726, Aug. 1982.
[14] E. Sicard and A. Rubio, “Analysis of crosstalk interference in CMOS integrated circuits,” IEEE Trans. Electromagn. Compat., vol. 34, no. 2, pp. 124–129, May 1992.
[15] S. Hsu, A. Agarwal, S. Mathew, R. Krishnamurthy, M. Hansson, and A. Alvandpour, “A 9GHz 320x80bit Low Leakage Microcode Read Only Memory in 65nm CMOS,” in Proceedings of the 32nd European Solid-State Circuits Conference(ESSCIRC, Sept. 2006, pp. 299–302.
[16] J. Kuo and C. Chiang, “Charge sharing problems in dynamic logic circuits: BiCMOS versus CMOS and a 1.5 V BiCMOS dynamic logic circuit free from charge sharing problems,” IEEE Trans. Circuits Syst. I, vol. 42, no. 11, pp. 974–977, Nov 1995.
[17] M.-F. Chang, L.-Y. Chiou, and K.-A. Wen, “A full code-patterns coverage highspeed embedded ROM using dynamic virtual guardian technique,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 496–506, Feb. 2006.
[18] A. Turier and L. Ben Ammar, “Low-Leakage ROM Architecture for High-Speed Mobile Applications,” in IEEE International Conference on Integrated Circuit Design and Technology(ICICDT), June 2007, pp. 1–4.
[19] Y. Lih, N. Tzartzanis, and W. W. Walker, “A leakage current replica keeper for dynamic circuits,” Solid-State Circuits, IEEE Journal of, vol. 42, no. 1, pp. 48–55, Jan. 2007.
[20] K. Agawa, H. Hara, T. Takayanagi, and T. Kuroda, “A bitline leakage compensation scheme for low-voltage SRAMs,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 726–734, May 2001.
[21] M. Khellah, Y. Ye, D. Somasekhar, D. Casper, B. Bloechel, T. Nguyen, G. Dermer, K. Zhang, G. Pandya, A. Farhang, and V. De, “Bitline leakage compensation (BLC) and leakage reduction (BLR) techniques for 2-3GHz on-chip cache arrays in microprocessors on 90nm logic technology,” in IEEE Symposium on VLSI Circuits Dig. Papers, pp. 262–263, June 2005.
[22] T.-H. Kim, J. Liu, and C. Kim, “A Voltage Scalable 0.26 V, 64 kb 8T SRAM With Vmin Lowering Techniques and Deep Sleep Mode,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1785–1795, June 2009.
[23] T. Haraszti, “Novel circuits for high speed ROMs,” IEEE J. Solid-State Circuits, vol. 19, no. 2, pp. 180–186, Apr 1984.
[24] E. Fong, J. Chang, and W. Tai, “A high performance 256K (512K) static ROM,” IEEE J. Solid-State Circuits, vol. 18, no. 6, pp. 807–810, Dec 1983.
[25] D. Wilson and P. Schroeder, “A 100ns 150mW 64Kbit ROM,” IEEE International Solid-State Circuits Conference (ISSCC), vol. XXI, pp. 152–153, Feb 1978.
[26] K. Itoh, K. Sasaki, and Y. Nakagome, “Trends in low-power RAMcircuit technologies,” Proceedings of the IEEE, vol. 83, no. 4, pp. 524–543, Apr 1995.
[27] C.-R. Chang, J.-S.Wang, and C.-H. Yang, “Low-power and high-speed ROMmodules for ASIC applications,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1516–1523, Oct. 2001.
[28] E. de Angel and J. Swartzlander, E.E., “Survey of low power techniques for ROMs,” in IEEE Int. Symp. Low Power Electronics and Design, pp. 7–11, Aug. 1997.
[29] K. Kiuchi, N. Ieda, K. Takeya, and T. Baba, “A 65 mW 128K EB-ROM,” IEEE J. Solid-State Circuits, vol. 14, no. 5, pp. 855–859, Oct 1979.
[30] R. Kanan, M. Declercq, A. Guyot, and B. Hochet, “A low-power high storage capacity structure for GaAs MESFET ROM,” IEEE International Workshop on Memory Technology, Design, and Testing (MTDT), pp. 58–63, Aug 1997.
[31] B.-D. Yang and L.-S. Kim, “A low-power ROM using single charge-sharing capacitor and hierarchical bit line,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 14, no. 4, pp. 313–322, April 2006.
[32] B.-D. Yang and L.-S. Kim, “A low-power ROM using charge recycling and charge sharing techniques,” IEEE J. Solid-State Circuits, vol. 38, no. 4, pp. 641–653, April 2003.
[33] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power CMOS digital design,” IEEE J. Solid-State Circuits, vol. 27, no. 4, pp. 473–484, April 1992.
[34] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1148–1158, July 2004.
[35] R. Singh and N. Bhat, “An offset compensation technique for latch type sense amplifiers in high-speed low-power SRAMs,” IEEE Trans. Very Large Scale Integration (VLSI) Systems, vol. 12, no. 6, pp. 652–657, June 2004.
[36] R. Houle, “Simple Statistical Analysis Techniques to Determine Optimum Sense Amp Set Times,” IEEE J. Solid-State Circuits, vol. 43, no. 8, pp. 1816–1825, Aug. 2008.
[37] “Single-Ended Differential Sense Amplifier Using Feedback Type Dynamic Reference Voltage Scheme,” Taiwan patent pending. Application number in ITRI is P62970013TW.
[38] K. Zhang, K. Hose, V. De, and B. Senyk, “The scaling of data sensing schemes for high speed cache design in sub-0.18 gm technologies,” in IEEE Symposium on VLSI Circuits Dig. Papers, pp. 226–227, 2000.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *