帳號:guest(3.145.186.6)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邱騰興
作者(外文):Chiu, Teng-Shin
論文名稱(中文):應用於感知無線電之多頻帶頻譜偵測器
論文名稱(外文):An Optimal Multiband Spectral Detector in Cognitive Radios
指導教授(中文):馬席彬
指導教授(外文):Ma, Hsi-Pin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9761576
出版年(民國):99
畢業學年度:99
語文別:英文
論文頁數:103
中文關鍵詞:感知無線電頻譜偵測適應性多重訊窗頻譜偵測快速傅立葉變換
外文關鍵詞:Cognitive RadiosSpectrum SensingAdaptive Multitaper Taper Spectrum EstimationFast Fourier Transform
相關次數:
  • 推薦推薦:0
  • 點閱點閱:82
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
在本論文中,設計了一個應用於多頻帶的頻譜接收器,並且用電路去實現這個設計,此偵測器擁有了Thomson所提出的適應性多訊窗頻譜估測(AMTSE),具有非參數估測的特性,應用在寬頻(Wide-Band)的多頻帶(Multiband)頻譜掃描上可以達到盲估測 (Blibd-Sensing) 達成高可靠度的優點 ,並且可以根據環境參數不同去調整各頻帶的權重,達成抗雜訊的好處,此偵測器採用了以Neyman-Pearson的規範,提出了一個以自由度參數(Degree of Freedom)為基準的臨界值判斷法,在一次寬頻的掃描中可以獲得所有子頻帶的資訊跟相對應的臨界值,對於偵測效能來講可以比合作式自相關接收機高出40%以上的偵測率,而在達成同樣偵測率的情況之下偵測點數更可比能量接收機少了有75%。
接著,在硬體設計中也提出了一個適用於此設計的新型快速傅立葉轉換器,為了有效的減少複雜的旋轉因子(Non-trivial Twiddler Factor),我們採用了混和基搭配高基低分裂基Radix-2 and Radix-2/4/8/16 的拆解來降低運算雜度,多產生的特殊旋轉因子(Trivial Ttwiddle Factor)搭配了所提出的時間共享(Timing-Sharing)技術跟特殊常數取代法,如此一來即可用簡單的位移運算器跟加法器取代多數的常數乘法器,如此一來可有效率的節省電路面積。由於使用平行處理的架構,在記憶體模組上會有大量的需求,會造成面積及功率消耗的增加,搭配了所提出的暫存器交換式(Delay Buffer Change)可以提高蝴蝶運算器的使用效率,一組蝴蝶運算器即可對兩筆同時作處理,可以把吞吐率提高為兩倍,而且可以節省其中一塊記憶體的工作週期為50%,對於高點數的快速傅立葉轉換器可以有效率的節省功率消耗。
本偵測器電路採用了暫存器交換層級語言描述(RTL),並且經由場效可程式閘陣列(FPGA)來完成驗證,最後由UMC90奈米製成,此偵測機晶片操作在100MHz之下總功率消耗為13.06(mw),Core area為1585X1585(μm2),此晶片總面積為2210 X 2210 (μm2)
In recent years, cognitive radio has become a valid solution to the problem of descrimination in the spectrum resource allocation. Among the categories of CR related technique, spectrum sensing is one of the most identical issues. Hence in this thesis, we present an optimal detector applied for the Thomson's adaptive multitaper spectral estimation (AMTSE) in CR. This detector is optimized based on Neyman-Pearson Theorem and it can adjust the detection thresholds to the environment change. In this way, the detector will be more robust to the colored noise impairments and be compatible to multiband spectrum sensing applications. The proposed AMTSE detector can greatly reduce the number of observations and detect the
primary users and spectrum holes compared with other conventional methods. It is shown that the detection rate of the proposed detector outperforms the one of energy detector by 40%. Besides, to achieve the PD = 0.999 the minimum required observation points of our proposed method are much fewer than the conventional one about 75%.
Subsequently, the author also proposes a novel FFT architecture for the AMTSE detector. The 1024 points FFT processor adopts the radix-2 and radix-2/4/8/16 to efficiently reduce the number of nontrivial twiddle factor multipliers. And by using the timing sharing techniques,
the trivial twiddle factor multiplier can be realized by using some adders and shifters. Moreover, we use delay buffer change technique to save power as only 0.06831(mw/MHz). The hardware complexity is significantly reduced that the gate count of FFT is 158.57 (gate/points)
and it is more efficient to handle two data streams. Finally, the proposed AMTSE detector has been emulated on the FPGA board and implemented with the synthesizable RTL by cell-based ASIC design flow. This chip is implemented in UMC 90-nm 1P9M process process, and the
power consumption of this detector operating in 100 MHz is 13.06 mw. The core area is 1585 × 1585(μm2) and the total area is 2210 × 2210(μm2).
1 Introduction 1
1.1 Background of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Cognitive Radio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Review of Prior Spectrum Sensing Techniques 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Energy Detection Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Matched-Filter Detection Approach . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Waveform-Based Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Autocorrelation-Based Detection . . . . . . . . . . . . . . . . . . . . . . . . 10
3 System Design 13
3.1 Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Architecture Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Adaptive Multitaper Spectral Estimation (AMTSE) . . . . . . . . . . 15
3.3.2 Proposed Spectral Detector . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 System Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.4 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.5 Complexity Comparison . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Simulation Results Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 Word-length Determination . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4 Hardware Design 43
4.1 specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2 Fast Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.2.1 Fast Fourier Transform Algorithm . . . . . . . . . . . . . . . . . . . 44
4.2.2 Fast Fourier Transform Architecture . . . . . . . . . . . . . . . . . . 48
4.2.3 Proposed Fourier Architecture for AMTSE detecor . . . . . . . . . . 51
4.2.4 What Kinds of Decimation ? . . . . . . . . . . . . . . . . . . . . . . 51
4.2.5 What Kinds of radix ? . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.6 Proposed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 AdaptiveWeighting Module . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Comparison of Hardware resources . . . . . . . . . . . . . . . . . . . . . . 74
5 Implementation Results 85
5.1 FPGA Emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1.1 FPGA feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1.2 Hardware Cost analysis . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 Post-Layout Simulation Result and Chip Layout . . . . . . . . . . . . . . . 90
5.2.1 Post-Layout Simulation . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.2 Power and Gate Count Analysis . . . . . . . . . . . . . . . . . . . . 92
5.2.3 Chip Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6 Conclusions and Future Works 97
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
[1] J. Mitola, “Software Radios: Survey, Critical Evaluation and Future Directions,” IEEE
Aerosp. Electron. Syst. Mag., vol. 8, pp. 25–36, Apr. 1993.
[2] ——, “The software radio architecture,” IEEE Commun. Mag., vol. 33, pp. 26–38, May
1995.
[3] ——, “Software Radio Architecture: A Mathematical Perspective,” IEEE J. Sel. Areas
Commun., vol. 17, pp. 514–538, Apr. 1999.
[4] J. Mitola and G. Q. Maguire, “Cognitive Radio: Making Software Radios More
Personal,” IEEE Personal Commun. Mag., vol. 6, pp. 13–18, Aug. 1999.
[5] J.Mitola, “Cognitive Radio for Flexible Mobile Multimedia Communications,” in Proc.
IEEE MoMuC ’99, Nov. 1999, pp. 3–10.
[6] FCC, “Spectrum Policy Task Force,” Tech. Rep. ET Docket, no. 02-135, Nov. 2002.
[7] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless Communications,” IEEE J.
Sel. Areas Commun., vol. 23, no. 3, pp. 201–205, Feb. 2005.
[8] FCC, “Notice of Proposed Rule Making and Order,” Tech. Rep. ET Docket, no. 03-322,
Dec. 2003.
[9] ——, “Cognitive Radio Technologies Proceeding,” Tech. Rep. ET Docket, no. 03-108,
Dec. 2003
[10] D. Cabric and R. W. Brodersen, “Physical Layer Design Issues Unique to Cognitive
Radio Systems,” in Proc. IEEE PIMRC ’05, vol. 2, Berlin, Germany, Sep. 2005, pp.
759–763.
[11] M. Shafi, L. J. Greenstein, and A. F. Molisch, “Propagation Issues for Cognitive Radio,”
Proc. IEEE, vol. 97, pp. 787–804, May 2009.
[12] S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum Sensing for Cognitive Radio,”
Proc. IEEE, vol. 97, pp. 849–877, May 2009.
[13] B. H. Juang, G. Y. Li, and M. Jun, “Signal Processing in Cognitive Radio,” Proc. IEEE,
vol. 97, pp. 805–823, May 2009.
[14] H. V. Poor, An Introduction to Signal Detection and Estimation. Berlin, Germany:
Springer-Verlag, 1994, 2nd ed.
[15] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory. Englewood
Cliffs, NJ: Prentice-Hall PTR, 1998.
[16] H. Urkowitz, “Energy Detection of Unknown Deterministic Signals,” Proc. IEEE,
vol. 55, pp. 523–531, Sep. 1967.
[17] A. Sonnenschein and P. M. Fishman, “Radiometric detection of spread-spectrum signals
in noise of uncertain power,” IEEE Trans. Aerosp. Electron. Syst., vol. 28, pp. 654–660,
Jul. 1992.
[18] D. Cabric, “Cognitive Radios: System Design Perspective,” PHD dissertation, University
of California, Berkeley, California, USA, 2007.
[19] D. Cabric, A. Tkachenko, and R. W. Brodersen, “Spectrum Sensing Measurements of
Pilot, Energy, and Collaborative Detection,” in Proc. IEEE MILCOM ’06, Washington,
DC, Oct. 2006, pp. 1–7.
[20] T. Ikuma and M. Naraghi-Pour, “A Comparison of Three Classes of Spectrum Sensing
Techniques,” in Proc. IEEE GLOBECOM ’08, New Orleans, LO, Nov. 2008, pp. 1–5.
[21] Y. Zeng and Y. C. Liang, “Covariance Based Signal Detections for Cognitive Radio,” in
Proc. IEEE DySPAN ’07, Dublin, Ireland, 2007, pp. 202–207.
[22] T. Ikuma and M. Naraghi-Pour, “Autocorrelation-Based Spectrum Sensing Algorithms
for Cognitive Radios,” in Proc. IEEE ICCCN ’08, Dublin, Ireland, Aug. 2008, pp. 1–6.
[23] S. Chaudhari, J. Lunden, and V. Koivunen, “Collaborative Autocorrelation-Based
Spectrum Sensing of OFDM Signals in Cognitive Radios,” in Proc. IEEE ICIS ’08,
Princeton, USA, Mar. 2008, pp. 19–21.
[24] S. Chaudhari, V. Koivunen, and H. V. Poor, “Distributed Autocorrelation-Based
Sequential Detection of OFDM Signals in Cognitive Radios,” in Proc. IEEE Crown-
Com ’07, Singapore, May 2008, pp. 1–6.
[25] H. Tang, “Some Physical Layer Issues of Wide-Band Cognitive Radio Systems,” in
Proc. IEEE DySPAN ’05, Baltimore, MD, USA, Nov. 2005, pp. 151–159.
[26] D. Cabric, S. M. Mishra, and R. W. Brodersen, “Implementation Issues in Spectrum
Sensing for Cognitive Radios,” in Proc. IEEE 38th Signals, Systems and Computers
Conf., vol. 1, Pacific Grove, California, Nov. 2004, pp. 772–776.
[27] S. A. Jafar, S. Srinivasa, I. Maric, and A. Goldsmith, “Breaking spectrum gridlock with
cognitive radios: An information theoretic perspective,” Proc. IEEE, vol. 97, pp. 894–
914, May 2009.
[28] S. Haykin, “The Multitaper Method for Accurate Spectrum Sensing in Cognitive Radio
Environments,” in Proc. IEEE ACSSC ’07, Nov. 2007, pp. 436–439.
[29] D. J. Thomson, “Spectrum Estimation and Harmonic Analysis,” Proc. IEEE, vol. 20,
pp. 1055–1096, Sep. 1982.
[30] D. Slepian, “Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty - V:
The Discrete Case,” Bell Syst. Tech. J., vol. 57, pp. 1371–1429, 1978.
[31] D. B. Percival and A. T. Walden, Spectral Analysis for Physical Applications. London,
U.K.: Cambridge University Press, 1993.
[32] T. W. Chiang, J. M. Lin, and H. P. Ma, “Optimal detector for multitaper spectrum estimator
in cognitive radios,” in Proc. IEEE Globecom ’09, accepted for publication.
[33] J.W. Cooley and J.W. Turkey, “An Algorithm for the Machine Calculation of Complex
Fourier Series,” IEEE Journal of Solid-State Circuits, vol. 19, pp. 297–301, 1965.
[34] S. Magar, S. Shen, G. Luikuo, M. Fleming, and R. Aguilar, “An Application Specific
DSP Chip for 100 Mhz Data Rates,” in Proc. Int. Conf. Acustics, Speech, Signal Process.
(ICASSP), vol. 4, pp. 1989 –1992, Apr. 1988.
[35] L. Schwoerer and E. Zielinski, “Optimized FFT Architecture for MIMO Applications,”
in Proc. European Signal Processing Conference(EUSIPCO), vol. 4, Sep. 2005.
[36] H. Y. L. Y.W Lin and C. Y. Lee, “A Dynamic Scaling FFT Processor for DVB-T
Applications,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 2005–2013, Nov. 2004.
[37] F.-L. Yuan, Y.-H. Lin, C.-F. Wu, M.-T. Shiue, and C.-K. Wang, “A 256-Point Dataflow
Scheduling 2x2 MIMO FFT/IFFT Processor for IEEE 802.16 WLAN,” in Proc.IEEE
ASSCC., pp. 309 –312, nov. 2008.
[38] D. W. K. J .H. Suk, “A 8192 Complex Point FFT/IFFT for COFDM Modulation
Scheme in DVB-T System,” pp. 131–134, Sept 2003.
[39] H. Y. L. Y. w. Lin and C. Y. Lee, “A Dynamic Scaling FFT Processor for DVB-T
Applications,” pp. 2005–2013, Nov 2005.
[40] P. T. Y.-T. Lin and T.-D. Chiueh, “Low-Power Variable-Length Fast Fourier Transform
Processor,” IEE Proc.-Comput. Digit. Tech, vol. 152, no. 4, pp. 499 –506, July. 2005.
[41] S. Li, H. Xu, W. Fan, Y. Chen, and X. Zeng, “A 128/256-Point Pipeline FFT/IFFT
Processor for MIMO OFDM System IEEE 802.16e,” Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on, pp. 1488 –1491, may. 2010.
[42] B. M. Bass, “A Low-Power, High-Performance, 1024-point FFT Processor,” IEEE
Journal of Solid-State Circuits, vol. 32, pp. 380 –387, mar. 1999.
[43] Y.-W. L. Yuan Chen and C.-Y. Lee, “A Block Scaling FFT/IFFT Processor for
WIMAX Applications,” A-SSCC, pp. 203 –206, 2006.
[44] Y.-W. Lin and C.-Y. Lee, “Design of an FFT/IFFT Processor for MIMO OFDM
Systems,” IEEE Transaction on Circuits and Systems - I: Regular Papers, vol. 54, no. 4,
pp. 807 –815, Apr. 2007.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *