帳號:guest(18.191.174.168)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳欣沅
作者(外文):Chen, Hsin-Yuan
論文名稱(中文):Multi Module Diminished-One Multipliers Design
論文名稱(外文):多模數之基數減1乘法器設計
指導教授(中文):張慶元
指導教授(外文):Chang, Tsin-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9761606
出版年(民國):99
畢業學年度:98
語文別:中文
論文頁數:62
中文關鍵詞:負數乘法器基數減1多模數
外文關鍵詞:negativemultiplierdiminished-1multi module
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
近年來,基數減1的模組(2n+1) 乘法器,有許多種做法。在此論文裡,我提出了一種新做法,專門針對基數減1的模組(2n+1) 乘法器,並且衍生出其它電路。
本論文提出2種一系列餘數乘法器,第一種應用在模數(2n+1),比較於前人作法,在數據方面比較優良,並且不需要特別做偵測真實零的電路。
第二種是改良第一種,可以整合5種模數(2n+1),2n,(2n-1),(2n+1+1),(2n+11),利用加一些多工器,分工器,及少許電路,即可整合5種模數之餘數乘法器。
基本構想就是利用減法,這個理論不只可以用來表示基數減1的模數(2n+1) 乘法器,進而達到減少面積與功率上的消耗,更可以利用硬體共用之做法,來選擇模組(2n-1) 與2n與(2n+1-1)普通乘法器,更能產生過往作法不能產生的模數(2n+1+1)的基數減1乘法器,也就是可切換式多模數乘法器,還能夠節省偵測真實零的硬體電路消耗。
誌謝…………………………………………………………………. ii
中文摘要…………………………………………………………..... iii
List of Contents……………………………………………………... IV
List of Figures……………………………………………………… VI
List of Tables……………………………………………………….. VII
Chapter 1. 介紹………………………………………………….. 1
1.1 動機與RNS基礎流程介紹……………………….................. 1
1.2 動機與研究故事…………………..………………………….. 3
1.3 論文大綱……………………………………………................. 4
Chapter 2. 運算與架構……………………………….…………... 5
2.1 Wallice與Dadda 演算法的運算區別與討論………..……… 5
2.2 餘數乘法器中全加減器的實現………………….………….. 6
2.3 餘數乘法器的實現(即非基數減1)………………………….. 10
2.4 套用Wallice 演算法的基數減1之2n+1餘數乘法器………... 13
2.5 套用Dadda 的基數減1之2n+1餘數乘法器…………………. 17
Chapter 3. 改善公式,架構,與規則性之推導及應用…............ 20
3.1 加減法器之實現……………………………………………… 20
3.2 針對2n+1的基數減1之餘數乘法器…………………………. 21
3.3 多共用模數的基數減1之2n+1餘數乘法器………………….. 25
3.4 負數規則性與推導…………………………………………….. 29
3.5 可變換式的多模數乘法器(Multi-Modulo Multiplier)………… 40
3.6 Detection bit說明……………………………………………… 48
Chapter 4. 數據比較……………………………………………….. 53
4.1 Using strict delay constraints…………………………………… 53
Chapter 5. 結論…………………………………………………… 55
Reference ……………………………………………………… 60
[1] F. Taylor, “A Single Modulus ALU for Signal Processing,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 33, pp. 1302-1315, 1985.
[2] E.D. DiClaudio, F. Piazza, G. Orlandi, “Fast Combinatorial RNS Processors for DSP Applications,” IEEE Trans. Computers, vol. 44, pp. 624-633, 1995.
[3] J. Ramirez, A. Garcia, S. Lopez-Buedo, A. Lloris, “RNS-Enabled Digital Signal Processor Design,” IEEE Electronics Letters, vol. 38, no. 6, pp. 266-268, 2002.
[4] R. Chaves and L. Sousa, “RDSP: A RISC DSP Based on Residue Number System,” in Proc. Euromicro Symp. Digital Systems Design, Sept. 2003, pp. 128-135.
[5] A. S. Ashur, M. K. Ibrahim, A. Aggon, “Novel RNS structures for the moduli set(2n-1, 2n, 2n+1) and their application to digital filter implementation”, Signal Processing, vol.46, pp.331-343, 1995.
[6] M. Soderstrand, K. Jenkins, G. Jullien, F. Taylor, Residue Number System Arithmetic: Modern Applications in Digital Signal Processing, IEEE Press, New York, 1986.
[7] F. Taylor, “A VLSI residue arithmetic multipliers”, IEEE Trans, Comput., vol. c-31, no. 6, pp. 540-546, 1982.
[8] L.M. Leibowitz, “A Simplified Binary Arithmetic for the Fermat Number Transform,” IEEE Trans Acoustics, Speech, and Signal Processing, vol. 24, pp. 356-359, 1976.
[9] T.K. Truong, J.J. Chang, I.S. Hsu, D.Y. Pei, I.S. ReeD, “Techniques for Computing the Discrete Fourier Transform Using the Quadratic Residue Fermat Number Systems,” IEEE Trans. Computers, vol. 35, pp. 1008-1012, 1986.
[10] M. Benaissa, A. Bouridane, S.S. Dlay, A.G.J. Holt, “Diminished-1 Multiplier for a Fast Convolver and Correlator Using the Fermat Number Transform,” IEE Proc. G, vol. 135, pp. 187-193, 1988.
[11] S. Sunder, F. El-Guibaly, A. Antoniou, “Area-Efficient Diminished-1 Multiplier for Fermat Number-Theoretic Transform,” IEE Proc. G, vol. 140, pp. 211-215, 1993.
[12] R. Zimmermann, A. Curiger, H. Bonnenberg, H. Kaeslin, N. Felber, W. Fichtner, “A 177 Mb/s VLSI Implementation of the International Data Encryption Algorithm,” IEEE J. Solid-State Circuits, vol. 29, no. 3, pp. 303-307, 1994.
[13] B. Cao, C.H. Chang, T. Srikanthan,”An Efficient Reverse Converter for the 4-Moduli Set{2 n -1, 2 n, 2n + 1, 22n + 1}Based on the New Chinese Remainder Theorem,” IEEE T Trans. Circuits and Systems—I: FUNDAMENTAL THEORY AND APPLICATIONS, vol. 50, no. 10, 2003.
[14] B. Cao, C.H. Chang, T. Srikanthan,”New Efficient Residue-to-Binary Converters for 4-Moduli Set (2n - 1,2n, 2n + 1,2n+1 - l },” IEEE International Symposium on Circuits and Systems, 2003, vol 4, pp. IV-536 - IV-539.
[15] B. Cao, T. Srikanthan, C.H. Chang, “Efficient reverse converters for four-moduli sets {2n-1, 2n, 2n+1, 2n+1 - 1} and {2n-1, 2n, 2n+1, 2n-1 - 1},” IEE Proc.-Comput. Digit. Tech., Vol. 152, No. 5, 2005.
[16] A. S. Molahosseini, K. Navi, C. Dadkhah, O. Kavehei, and S. Timarchi, “Efficient Reverse Converter Designs for the New 4-Moduli Sets {2n-1, 2n, 2n+1, 22n+1 - 1}and {2n-1, 2n+1, 22n, 22n + 1} Based on New CRTs,” IEEE Trans. Circuits and Systems—I: REGULAR PAPERS, vol. 57, no. 4, pp.823-835, 2010.
[17] C. Efstathiou, H. T. Vergos, G. Dimitrakopoulos, & D. Nikolos,” Efficient modulo 2n+1 tree multipliers for diminished-1 operands,” ICECS, vol.1, pp.200-203, 2003.
[18] C. Efstathiou, H. T. Vergos, G. Dimitrakopoulos, & D. Nikolos “Efficient Diminished-1 Modulo 2n+1 Multipliers,” IEEE Trans. Computers, vol. 54, no. 4, 2005
[19] L. Dadda, “Some Schemes for Parallel Multipliers,” Alta Frequenza, vol. 34, pp. 349-356, 1965.
[20] R. A. Hall, S. Ragunathan, E. Earl, “A Comparison of Timing Delays for 32-bit Wallace and Dadda Multipliers in 0.18 Micron Technology,” ACISC ,May 15, 2007.
[21] T. Y. Chang, J. R. Huang, H. Y. Lo, P. S. Wang, and K. Yang,”The On-the-fly Circuits That Can Be Applied to Array Multiplier and Fast Gray Code Adder” Proc. 43rd IEEE Midwest Symp. on Circuits and Systems, Lansing MI, vol.1, Aug, 2000, pp342-345.
[22] K. Hwang, Computer Arithmetic Principles, Architecture, and Design, in section 6.3, John Wiley & Sons, NY, 1979.
[23] Z. Wang, G. A. Jullien , W. C. Miller, "An Efficient Tree Architecture for Modulo 2n+1 multiplication", J. of VLSI Signal Processing, vol.14, pp. 241-248, 1996.
[24] M. Bhardwaj, T. Srikanthan, and C. T. Clarke, “A reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1 + 1},” in Proc. 14th IEEE Symp. Computer Arithmetic, Adelaide, Australia, Apr. 1999, pp. 168–175.
[25] A. P. Vinod and A. B. Premkumar, “A memoryless reverse converter for the 4-moduli superset {2n-1, 2n, 2n+1, 2n+1 - 1},” J. Circuits, Syst., Comput., vol. 10, no. 1&2, pp. 85–99, 2000.
[26] B. Cao, C. H. Chang, and T. Srikanthan, “A residue-to-binary converter for a new five-moduli set,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 5, pp. 1041–1049, 2007.
[27] H. T. Vergos, C. Efstathiou, and D. Nikolos, “Diminished-one modulo 2n + 1 adder design,” IEEE Trans. Computers, vol. 51, no. 12, pp. 1389–1399, 2002.
[28] C. Efstathiou, H. T. Vergos, and D. Nikolos, “Modulo 2n ± 1 adder design using select-prefix blocks,” IEEE Trans. Computers, vol. 52, no. 11, pp. 1399–1406, 2003.
[29] S.-H. Lin and M.-H. Sheu, “VLSI design of diminished-one modulo 2n +1 adder using circular Carry selection,” IEEE Trans. Circuits Syst. II, Exp.Briefs, vol. 55, no. 9, pp. 897–901, 2008.
[30] T.-B. Juang, M.-Y. Tsai, and C.-C. Chiu, “Corrections on ‘VLSI design of diminished-one modulo 2n + 1 adder using circular Carry selection,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 3, pp. 260–261, 2009.
[31] Y. Ma, “A Simplified Architecture for Modulo (2n +1) Multiplication,” IEEE Trans. Computers, vol. 47, no. 3, pp. 333-337, Mar. 1998.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *