帳號:guest(3.15.202.4)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):邵弼煌
作者(外文):Shao, Pi-Huang
論文名稱(中文):Fast-Lock Tri-State Phase-Locked Loop Using Dual-Edge Triggered PFD and Bandwidth Controller
論文名稱(外文):使用雙緣觸發相位頻率偵測器與頻寬控制器之快速鎖定三種狀態鎖相迴路
指導教授(中文):張慶元
指導教授(外文):Chang, Tsin-Yuan
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學號:9761623
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:70
中文關鍵詞:鎖相迴路相位頻率偵測器快速鎖定
外文關鍵詞:PLLPFDfast-lock
相關次數:
  • 推薦推薦:0
  • 點閱點閱:113
  • 評分評分:*****
  • 下載下載:15
  • 收藏收藏:0
A fast-lock tri-state phase-locked loop (PLL) using the dual-edge triggered phase frequency detector (PFD) and the bandwidth controller is presented. The proposed PLL uses the tri-state bandwidth design to achieve fast locking and attain better output jitter performance. If the PLL is out of lock, it will operate in a wide-bandwidth (fractional-N state) to achieve fast tracking during transient. Next, the PLL will be in a middle-bandwidth (integer-N state) to eliminate the fractional spur, if the phase error between reference clock and feedback signal is limited to π/10. Finally, the PLL is in a narrow-bandwidth (small charge pump current state) to attain the lower jitter on the output frequency during stable state. Moreover, this thesis generalizes a variable-bandwidth scheme, introducing a PLL that changes the bandwidth not only by switching the divider ratio but also by switching the charge pump current.
Compared with traditional PFDs, the proposed dual-edge triggered PFD rapidly reduces the phase error between reference clock and feedback signal during transient time to achieve fast tracking. In addition, the bandwidth controller automatically detects the PLL’s locking status to switch its bandwidth state without costing a large area. The PLL is implemented under TSMC 0.18μm 1P6M CMOS process and the supply voltage is 1.8V. The post-simulation shows that the locking time of the proposed PLL can be reduced over 73% in comparison to the conventional PLL.
本論文提出,使用雙緣觸發相位頻率偵測器與頻寬控制器之快速鎖定三種狀態鎖相迴路。本論文所提出的鎖相迴路,利用三種頻寬狀態流程達到快速鎖定以及低相位抖動效果。如果鎖相迴路為脫鎖狀態,則在暫態時鎖相迴路操作在大頻寬狀態(非整數模式)達到快速鎖定;接著,當參考時脈訊號與回授訊號間的相位差小於 π/10 時,則鎖相迴路操作在中頻寬狀態(整數模式),使得消除小指數突波;最後穩定時,鎖相迴路操作在小頻寬狀態(小電荷幫浦電流),使得頻率輸出端得到較小的相位抖動。本論文提出新的可適應性頻寬架構,除了可藉由改變電荷幫浦電流大小達到頻寬的調整,也可藉由調整除頻數的大小達到頻寬的調整。
相較於傳統的相位頻率偵測器,本文所提出的雙緣觸發相位頻率偵測器能快速地減小參考時脈與回授訊號間的相位差,以達到快速鎖定。此外,本文提出的頻寬控制器能自動偵測鎖相迴路的鎖定狀態,在不消耗過大面積的情況下達到迴路頻寬的自動切換。本文所提出的鎖相迴路使用TSMC 0.18μm 1P6M CMOS process完成晶片,供應電壓為1.8V,佈局後的模擬結果相較於傳統的鎖相迴路,本文所提出的鎖相迴路能有效地減少鎖定時間,改善的鎖定時間為73%。
中文摘要...................................................I
Abstract..................................................II
致謝.....................................................III
List of Contents..........................................IV
List of Figures...........................................VI
List of tables............................................IX
Chapter 1 Introduction..................................1
1.1 Motivation..........................................2
1.2 Technique Review....................................4
1.3 Thesis Overview.....................................8
Chapter 2 Phase Locked Loop and Adaptive Function.......9
2.1 PLL Overview........................................9
2.1.1 PFD (Phase-Frequency Detector)......................11
2.1.2 Charge Pump.........................................13
2.1.3 Loop Filter.........................................14
2.1.4 VCO (Voltage-Controlled Oscillator).................17
2.1.5 Frequency Divider...................................20
2.2 PLL Analysis.......................................24
2.3 Trade-Off in Bandwidth and Adaptive Bandwidth Algorithm...27
Chapter 3 Proposed Fast-Lock Tri-State Bandwidth PLL...31
3.1 Proposed fast-lock tri-state bandwidth PLL overview..................................................32
3.2 The operation flow of the proposed fast-lock tri-state bandwidth PLL...34
3.3 Dual-Edge Triggered Phase Frequency Detector.......38
3.4 Charge pump........................................40
3.5 Adaptive Loop Filter...............................42
3.6 Fractional-N Divider...............................43
3.7 Switcher (switching from fractional-N state to integer-N state)...45
3.8 Bandwidth controller...............................48
Chapter 4 Simulation results and comparison............50
4.1 Simulation results.................................50
4.2 Specification......................................58
4.3 Layout view........................................59
4.4 Comparison.........................................60
Chapter 5 Conclusions..................................67
Chapter 6 Biography....................................68
[1] K. Woo, Y. Liu, E. Nam, and D. Ham, “Fast-Lock Hybrid PLL Combining Fractional- N and Integer-N Modes of Differing Bandwidths,” IEEE Journal of Solid-State Circuits, vol. 43, no. 2, pp. 379-389, 2008.
[2] C. Y. Yang, and S. I. Liu, “Fast-switching frequency synthesizer with a discriminator-aided phase detector,” IEEE Journal of Solid-State Circuits, vol. 35, no. 10, pp. 1445-1452, 2000.
[3] K. H. Cheng, W. B. Yang, and C. M. Ying, “A dual-slope phase frequency detector and charge pump architecture to achieve fast locking of phase-locked loop,” IEEE Transactions on Circuits and Systems II, vol. 50, no. 11, pp. 892-896, 2003.
[4] J. Hakkinen, and J. Kostamovaara, “Speeding up an integer-N PLL by controlling the loop filter charge,” IEEE Transactions on Circuits and Systems II, vol. 50, no. 7, pp. 343-354, 2003.
[5] J. Kim, M. A. Horowitz, and G. Y. Wei, “Design of CMOS adaptive-bandwidth PLL/DLLs: a general approach,” IEEE Transactions on Circuits and Systems II, vol. 50, no. 11, pp. 860-869, 2003.
[6] Y. S. Choi, H. H. Choi, and T. H. Kwon, “An adaptive bandwidth phase locked loop with locking status indicator,” Proc. of KORUS, Science and Technology, pp. 826-829, 2005.
[7] Y. F. Kuo, R. M. Weng, and C. Y. Liu, “A Fast Locking PLL With Phase Error Detector,” Proc. of Electron Devices and Solid-State Circuits, pp. 423-426, 2005.
[8] L. Liu, and B. Li, “Reduced pull-in time of phase-locked loops with a novel nonlinear phase-frequency detector,” Proc. of the Asia Pacific Microwave Conference, vol. 5, pp. 4-7, 2005.
[9] K. H. Cheng, Y. L. Lo, C. W. Lai, and W. B. Yang, “A 100 MHz-1 GHz Adaptive Bandwidth PLL Using TDC Technique,” Proc. of IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 1163-1166, 2007.
[10] G. J. Huang, C. S. Chen, W. S. Wuen, and K. A. Wen, “A fast settling and low reference spur PLL with double sampling phase detector,” Proc. of IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 316-319, 2008.
[11] J. Roche, W. Rahadjandrabey, L. Zady, G. Bracmard, and D. Fronte, “A PLL with loop bandwidth enhancement for low-noise and fast-settling clock recovery,” Proc. of IEEE International Conference on Electronics, Circuits and Systems (ICECS), pp. 802-805, 2008.
[12] W. H. Chiu, Y. H. Huang, and T. H. Lin, “A 5GHz phase-locked loop using dynamic phase-error compensation technique for fast settling in 0.18um CMOS,” Proc. of Symposium on VLSI Circuits, pp. 128-129, 2009.
[13] Y. Tang, M. Ismail, and S. Bibyk, “A new fast-settling gearshift adaptive PLL to extend loop bandwidth enhancement in frequency synthesizers,” Proc. of IEEE International Symposium on Circuits and Systems, vol. 4, pp. 787-790, 2002.
[14] D. S. Kim, H. Song, T. Kim, S. Kim, and D. K. Jeong, “A 1.35GHz all-digital fractional-N PLL with adaptive loop gain controller and fractional divider,” Proc. of IEEE Asia Solid-State Circuits Conference (A-SSCC), pp. 161-164, 2009.
[15] S. Sidiropoulos, D. Liu, J. Kim, G. Wei, and M. Horowitz, “Adaptive bandwidth DLLs and PLLs using regulated supply CMOS buffers,” Proc. of Symposium on VLSI Circuits, pp. 124-127, 2000.
[16] J. G. Maneatis, J. Kim, I. McClatchie, J. Maxey, and M. Shankaradas, “Self-biased high-bandwidth low-jitter 1-to-4096 multiplier clock generator PLL,” IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp. 1795-1803, 2003.
[17] A. Arakali, S. Gondi, and P. K. Hanumolu, “Low-Power Supply-Regulation Techniques for Ring Oscillators in Phase-Locked Loops Using a Split-Tuned Architecture,” IEEE Journal of Solid-State Circuits, vol. 44, no. 8, pp. 2169-2181, 2009.
[18] M. Mansuri, and C. K. K. Yang, “A low-power adaptive bandwidth PLL and clock buffer with supply-noise compensation,” IEEE Journal of Solid-State Circuits, vol. 38, no. 11, pp. 1804-1812, 2003.
[19] T. Wu, K. Mayaram, and U. K. Moon, “An On-chip Calibration Technique for Reducing Supply Voltage Sensitivity in Ring Oscillators,” IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 775-783, 2007.
[20] M. Mansuri, A. Hadiashar, and C. K. K. Yang, “Methodology for on-chip adaptive jitter minimization in phase-locked loops,” IEEE Transactions on Circuits and Systems II, vol. 50, no. 11, pp. 870-878, 2003.
[21] J. Kim, J. K. Kim, B. J. Lee, N. Kim, D. K. Jeong, and W. Kim, “A 20-GHz phase-locked loop for 40-gb/s serializing transmitter in 0.13um CMOS,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp. 899-908, 2006.
[22] T. C. Lee, and B. Razavi, “A stabilization technique for phase-locked frequency synthesizers,” IEEE Journal of Solid-State Circuits, vol. 38, no. 6, pp. 888-894, 2003.
[23] S. Sunter, and A. Roy, “BIST for phase-locked loops in digital applications,” Proc. of IEEE International Test Conference, pp. 532-540, 1999.
[24] T. Xia, and J. C. Lo, “Time-to-voltage converter for on-chip jitter measurement,” IEEE Transactions on Instrumentation and Measurement, vol. 52, no. 6, pp. 1738-1748, 2003.
[25] M. Ishida, K. Ichiyama, T. J. Yamaguchi, M. Soma, M. Suda, T. Okayasu, D. Watanabe, and K. Yamamoto, “A programmable on-chip picosecond jitter-measurement circuit without a reference-clock input,” Proc. of IEEE International Solid-State Circuits Conference, pp. 512-614 Vol. 1, 2005.
[26] T. Xia, H. Zheng, J. Li, and A. Ginawi, “Self-refereed on-chip jitter measurement circuit using Vernier oscillators,” Proc. of IEEE Computer Society Annual Symposium on VLSI, pp. 218-223, 2005.
[27] J. C. Hsu, and C. C. Su, “BIST for Measuring Clock Jitter of Charge-Pump Phase-Locked Loops,” Proc. of IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 2, pp. 276-285, 2008.
[28] S. Cheng, H. Tong, J. Silva-Martinez, and A. I. Karsilayan, “Design and Analysis of an Ultrahigh-Speed Glitch-Free Fully Differential Charge Pump With Minimum Output Current Variation and Accurate Matching,” IEEE Transactions on Circuits and Systems II, vol. 53, no. 9, pp. 843-847, 2006.
[29] C. N. Chuang, and S. I. Liu, “A 0.5-5 GHz Wide-Range Multiphase DLL With a Calibrated Charge Pump,” IEEE Transactions on Circuits and Systems II, vol. 54, no. 11, pp. 939-943, 2007.
[30] S. L. J. Gierkink, “Low-Spur, Low-Phase-Noise Clock Multiplier Based on a Combination of PLL and Recirculating DLL With Dual-Pulse Ring Oscillator and Self-Correcting Charge Pump,” IEEE Journal of Solid-State Circuits, vol. 43, no. 12, pp. 2967-2976, 2008.
[31] C. L. Ti, Y. H. Liu, and T. H. Lin, “A 2.4-GHz fractional-N PLL with a PFD/CP linearization and an improved CP circuit,” Proc. of IEEE International Symposium on Circuits and Systems, pp. 1728-1731, 2008.
[32] J. Lee, and B. Kim, “A low-noise fast-lock phase-locked loop with adaptive bandwidth control,” IEEE Journal of Solid-State Circuits, vol. 35, no. 8, pp. 1137-1145, 2000.
[33] Y. A. Eken, and J. P. Uyemura, “A 5.9-GHz voltage-controlled ring oscillator in 0.18um CMOS,” IEEE Journal of Solid-State Circuits, vol. 39, no. 1, pp. 230-233, 2004.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *