帳號:guest(18.216.1.97)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):張偉唐
作者(外文):Chang, Wei-Tang
論文名稱(中文):人類嗜酸性白血球神經毒蛋白之肝素/硫酸乙醯肝素結合區域鑑定及特性分析
論文名稱(外文):Characterization and Identification of Heparin/Heparan Sulfate Binding Motifs on Human Eosinophil Derived Neurotoxin
指導教授(中文):張大慈
指導教授(外文):Chang, Margaret Dah-Tsyr
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:9780540
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:95
中文關鍵詞:人類嗜酸性白血球神經毒蛋白肝素硫酸乙醯肝素螢光輔助醣電泳
外文關鍵詞:eosinophil derived neurotoxinheparinheparan-sulfateFluorescence-assisted carbohydrate electrophoresis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:144
  • 評分評分:*****
  • 下載下載:1
  • 收藏收藏:0
人類嗜酸性白血球神經毒蛋白(eosinophil derived neurotoxin, EDN)隸屬於人類核醣核酸水解酶A家族(RNase A superfamily)的一員,亦稱為核醣核酸水解酶二 (RNase 2)。EDN係由活化的嗜酸性白血球釋放之分泌性蛋白質,因序列中含12個正電胺基酸,故具有高達8.9的等電點(pI)值。EDN具有抗病毒的能力,血液中EDN含量亦為臨床發炎反應之生物標記。本研究主要探討EDN與人類支氣管上皮細胞(Beas-2B cell)表面的硫酸乙醯肝素(heparan sulfate)或肝素(heparin)之結合作用,並進行EDN序列中肝素結合區域之鑑定及特性分析。正常型及突變型EDN重組蛋白皆利用透過大腸桿菌(E. coli)表現系統生產,並利用酵素免疫分析法(ELISA)及螢光輔助醣電泳(FACE)證實EDN與人類支氣管上皮細胞或肝素分子間的交互作用。本研究利用不同的肝素衍生物進行競爭實驗,發現肝素分子中胺基及氧基之硫酸化作用對於EDN的結合皆相當重要。除此之外,亦於EDN序列中鑑定3個與肝素結合的區域,分別命名為HBR1 (34QRRCKN)、HBR2 (65NKTRKN)、及 HBR3 (113NRDQRRD)。當中HBR1為最重要的肝素結合位,其影響力大於HBR2及HBR3。本研究也驗證EDN進入細胞中之特性,並推測此特性與EDN和細胞表面的硫酸乙醯肝素結合高度相關。本論文針對人類嗜酸性白血球神經毒蛋白之肝素/硫酸乙醯肝素結合區域進行分析及探討,並發現EDN之細胞及生化反應機制,具體貢獻於蛋白質與醣分子交互作用之生物功能研究。
Eosinophil-derived neurotoxin (EDN, also known as RNase2) is secreted by activated eosinophils and is a member of human RNase A superfamily. It contains 12 cationic residues and thus possesses a high pI value of 8.9. EDN is also an antiviral RNase and its level in biological fluid is used as an inflammatory bio-marker. This study focuses on identification and characterization of the essential heparin binding motifs in EDN, and the minimal EDN binding unit in heparin polysaccharides. Recombinant wild-type EDN, and mutant EDNs derived from site-directed mutagenesis were expressed by E. coli expression system. The interaction of EDN to bronchial epithelial cells and heparin has been demonstrated by cell ELISA and FACE, respectively. The results showed direct interaction between recombinant EDN and heparin as well as heparan sulfate (HS). In addition, competitive assays using heparin derivatives indicated that the sulfate groups contributed almost all negative charges for EDN binding, and the crucial role of N-sulfated and O-sulfated groups in heparin in the interaction to EDN was illustrated. The functional heparin binding motif has been identified by site-directed mutagenesis screening. Three heparin binding regions (HBRs) on EDN including HBR1 (34QRRCKN), HBR2 (65NKTRKN), and HBR3 (113NRDQRRD) are identified. HBR1 is the most important motif in governing EDN binding to heparin/HS, for the heparin/HS binding effect of HBR1 is higher than that of HBR2 and HBR3. Furthermore, the penetration of MBP-EDN to Beas-2B cells requires HBR1 and may correlate with the interaction of EDN on cell surface HS. Taken together, we have discovered and characterized functional heparin/HS binding motifs on hEDN.
摘要 I
Abstract II
Acknowledgement III
Tables of contents IV
List of figures VI
List of Tables VIII
List of Appendixes IX
Abbreviation X


Chapter 1 Introduction 1
Chapter 2 Materials and methods 10
2-1 Bacterial strains, vectors, and culture conditions 10
2-2 Cells and cell culture 10
2-3 Antibodies and reagents 11
2-4 Construct 12
2-5 Site-directed mutagenesis and DNA sequencing 12
2-6 In situ PCR for construct checking 14
2-7 Mini-preparation of plasmids 15
2-8 Competent cell preparation and transformation 16
2-9 Large scale expression of recombinant protein 16
2-10 Purification of MBP and recombinant MBP-EDN fusion protein 17
2-11 Isolation and solubilization of EDN-6His inclusion bodies 18
2-12 Purification of recombinant EDN -6His 18
2-13 In vitro folding of EDN-6His 19
2-14 Buffer exchange, protein concentration and quantification 19
2-15 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) 20
2-16 Western blotting analysis 21
2-17 RNase activity assay 21
2-18 Cell based enzyme-link immunosorbent assay (ELISA) 22
2-19 GAGs competitor assay and block assay 23
2-20 Fluorescence-assisted carbohydrate electrophoresis (FACE) 24
2-21 EDN uptake assays 24
2-22 Statistical analysis 25
Chapter 3 Results 26
3-1 Expression and purification of soluble MBP, MBP-EDN and mutant MBP-EDN 26
3-2 Expression and purification of wild type and mutant EDN-6His 28
3-3 RNase activities of refold EDN-6His and ECP-6His against yeast tRNA 29
3-4 EDN interacts with Beas-2B cells and heparin 31
3-5 Identification of interaction between recombinant EDN and heparin 32
3-6 Characterization of the interaction between recombinant EDN and heparin derivatives 33
3-7 Identification of heparin binding motifs on EDN 37
3-8 Comparison of the interaction of heparin to EDN and ECP 40
3-9 Uptake of MBP-EDN into Beas-2B cells 41
Discussion 42
Figures 50
Tables 74
Reference 85
Appendix 90
1. Dyer, K.D. and H.F. Rosenberg, The RNase a superfamily: generation of diversity and innate host defense. Mol Divers, 2006. 10(4): p. 585-97.
2. Beintema, J.J., et al., Molecular evolution of the ribonuclease superfamily. Prog Biophys Mol Biol, 1988. 51(3): p. 165-92.
3. Rosenberg, H.F., RNase A ribonucleases and host defense: an evolving story. J Leukoc Biol, 2008. 83(5): p. 1079-87.
4. Boix, E. and M.V. Nogues, Mammalian antimicrobial proteins and peptides: overview on the RNase A superfamily members involved in innate host defence. Mol Biosyst, 2007. 3(5): p. 317-35.
5. Pizzo, E., et al., Ribonucleases with angiogenic and bactericidal activities from the Atlantic salmon. FEBS J, 2008. 275(6): p. 1283-95.
6. McEwen, B.J., Eosinophils: a review. Vet Res Commun, 1992. 16(1): p. 11-44.
7. Silberstein, D.S., Eosinophil function in health and disease. Crit Rev Oncol Hematol, 1995. 19(1): p. 47-77.
8. Horie, S., G.J. Gleich, and H. Kita, Cytokines directly induce degranulation and superoxide production from human eosinophils. J Allergy Clin Immunol, 1996. 98(2): p. 371-81.
9. Takafuji, S., K. Tadokoro, and K. Ito, Effects of interleukin (IL)-3 and IL-5 on human eosinophil degranulation induced by complement components C3a and C5a. Allergy, 1996. 51(8): p. 563-8.
10. Wang, H.Y., et al., Transcriptional regulation of human eosinophil RNases by an evolutionary- conserved sequence motif in primate genome. BMC Mol Biol, 2007. 8: p. 89.
11. Wang, H.Y., et al., Transcriptional regulation of human eosinophil RNase2 by the liver-enriched hepatocyte nuclear factor 4. J Cell Biochem, 2009. 106(2): p. 317-26.
12. Qiu, Z., et al., GATA transcription factors regulate the expression of the human eosinophil-derived neurotoxin (RNase 2) gene. J Biol Chem, 2009. 284(19): p. 13099-109.
13. Sorrentino, S., G.K. Tucker, and D.G. Glitz, Purification and characterization of a ribonuclease from human liver. J Biol Chem, 1988. 263(31): p. 16125-31.
14. Yasuda, T., et al., Purification and characterization of a ribonuclease from human spleen. Immunological and enzymological comparison with nonsecretory ribonuclease from human urine. Eur J Biochem, 1990. 191(2): p. 523-9.
15. Mizuta, K., et al., Purification and characterization of three ribonucleases from human kidney: comparison with urine ribonucleases. Arch Biochem Biophys, 1990. 281(1): p. 144-51.
16. Kardana, A., et al., Characterisation of UGP and its relationship with beta-core fragment. Br J Cancer, 1993. 67(4): p. 686-92.
17. Mastrianni, D.M., et al., Localization of the human eosinophil Charcot-Leyden crystal protein (lysophospholipase) gene (CLC) to chromosome 19 and the human ribonuclease 2 (eosinophil-derived neurotoxin) and ribonuclease 3 (eosinophil cationic protein) genes (RNS2 and RNS3) to chromosome 14. Genomics, 1992. 13(1): p. 240-2.
18. Slifman, N.R., et al., Ribonuclease activity associated with human eosinophil-derived neurotoxin and eosinophil cationic protein. J Immunol, 1986. 137(9): p. 2913-7.
19. Durack, D.T., et al., Purification of human eosinophil-derived neurotoxin. Proc Natl Acad Sci U S A, 1981. 78(8): p. 5165-9.
20. Rosenberg, H.F., The eosinophil ribonucleases. Cell Mol Life Sci, 1998. 54(8): p. 795-803.
21. Rosenberg, H.F., S.J. Ackerman, and D.G. Tenen, Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity. J Exp Med, 1989. 170(1): p. 163-76.
22. Mosimann, S.C., et al., X-ray crystallographic structure of recombinant eosinophil-derived neurotoxin at 1.83 A resolution. J Mol Biol, 1996. 260(4): p. 540-52.
23. Rosenberg, H.F., Recombinant human eosinophil cationic protein. Ribonuclease activity is not essential for cytotoxicity. J Biol Chem, 1995. 270(14): p. 7876-81.
24. Fredens, K., R. Dahl, and P. Venge, The Gordon phenomenon induced by the eosinophil cationic protein and eosinophil protein X. J Allergy Clin Immunol, 1982. 70(5): p. 361-6.
25. Gleich, G.J. and C.R. Adolphson, The eosinophilic leukocyte: structure and function. Adv Immunol, 1986. 39: p. 177-253.
26. Gullberg, U., et al., The cytotoxic eosinophil cationic protein (ECP) has ribonuclease activity. Biochem Biophys Res Commun, 1986. 139(3): p. 1239-42.
27. Goto, T., et al., Urinary eosinophil-derived neurotoxin concentrations in patients with atopic dermatitis: a useful clinical marker for disease activity. Allergol Int, 2007. 56(4): p. 433-8.
28. Domachowske, J.B., et al., Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis, 1998. 177(6): p. 1458-64.
29. Lee-Huang, S., et al., Lysozyme and RNases as anti-HIV components in beta-core preparations of human chorionic gonadotropin. Proc Natl Acad Sci U S A, 1999. 96(6): p. 2678-81.
30. Rugeles, M.T., et al., Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. AIDS, 2003. 17(4): p. 481-6.
31. Yang, D., et al., Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med, 2008. 205(1): p. 79-90.
32. Lehrer, R.I., et al., Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J Immunol, 1989. 142(12): p. 4428-34.
33. Carreras, E., et al., Both aromatic and cationic residues contribute to the membrane-lytic and bactericidal activity of eosinophil cationic protein. Biochemistry, 2003. 42(22): p. 6636-44.
34. Torrent, M., et al., Topography studies on the membrane interaction mechanism of the eosinophil cationic protein. Biochemistry, 2007. 46(3): p. 720-33.
35. Young, J.D., et al., Mechanism of membrane damage mediated by human eosinophil cationic protein. Nature, 1986. 321(6070): p. 613-6.
36. Carreras, E., et al., Surface-exposed amino acids of eosinophil cationic protein play a critical role in the inhibition of mammalian cell proliferation. Mol Cell Biochem, 2005. 272(1-2): p. 1-7.
37. Boix, E., et al., The antipathogen activities of eosinophil cationic protein. Curr Pharm Biotechnol, 2008. 9(3): p. 141-52.
38. Venge, P., et al., Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy, 1999. 29(9): p. 1172-86.
39. Gleich, G.J., et al., Biochemical and functional similarities between human eosinophil-derived neurotoxin and eosinophil cationic protein: homology with ribonuclease. Proc Natl Acad Sci U S A, 1986. 83(10): p. 3146-50.
40. Makarov, A.A. and O.N. Ilinskaya, Cytotoxic ribonucleases: molecular weapons and their targets. FEBS Lett, 2003. 540(1-3): p. 15-20.
41. Maeda, T., et al., Growth inhibition of mammalian cells by eosinophil cationic protein. Eur J Biochem, 2002. 269(1): p. 307-16.
42. Fan, T.C., et al., A heparan sulfate-facilitated and raft-dependent macropinocytosis of eosinophil cationic protein. Traffic, 2007. 8(12): p. 1778-95.
43. Prydz, K. and K.T. Dalen, Synthesis and sorting of proteoglycans. J Cell Sci, 2000. 113 Pt 2: p. 193-205.
44. Perrimon, N. and M. Bernfield, Specificities of heparan sulphate proteoglycans in developmental processes. Nature, 2000. 404(6779): p. 725-8.
45. Kramer, K.L. and H.J. Yost, Heparan sulfate core proteins in cell-cell signaling. Annu Rev Genet, 2003. 37: p. 461-84.
46. Mahley, R.W. and Z.S. Ji, Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res, 1999. 40(1): p. 1-16.
47. Kronenberg, H.M., Developmental regulation of the growth plate. Nature, 2003. 423(6937): p. 332-6.
48. Stickens, D., et al., Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development, 2005. 132(22): p. 5055-68.
49. Jakobsson, L., et al., Heparan sulfate in trans potentiates VEGFR-mediated angiogenesis. Dev Cell, 2006. 10(5): p. 625-34.
50. Bishop, J.R., M. Schuksz, and J.D. Esko, Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature, 2007. 446(7139): p. 1030-7.
51. Capila, I. and R.J. Linhardt, Heparin-protein interactions. Angew Chem Int Ed Engl, 2002. 41(3): p. 391-412.
52. Linhardt, R.J., et al., Isolation and characterization of human heparin. Biochemistry, 1992. 31(49): p. 12441-5.
53. Munoz, E.M. and R.J. Linhardt, Heparin-binding domains in vascular biology. Arterioscler Thromb Vasc Biol, 2004. 24(9): p. 1549-57.
54. Cardin, A.D. and H.J. Weintraub, Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis, 1989. 9(1): p. 21-32.
55. Fan, T.C., et al., Characterization of molecular interactions between eosinophil cationic protein and heparin. J Biol Chem, 2008. 283(37): p. 25468-74.
56. Lee, J.C., et al., Synthesis of heparin oligosaccharides. J Am Chem Soc, 2004. 126(2): p. 476-7.
57. Boix, E., et al., Kinetic and product distribution analysis of human eosinophil cationic protein indicates a subsite arrangement that favors exonuclease-type activity. J Biol Chem, 1999. 274(22): p. 15605-14.
58. Wu, S.C., J.R. Chiang, and C.W. Lin, Novel cell adhesive glycosaminoglycan-binding proteins of Japanese encephalitis virus. Biomacromolecules, 2004. 5(6): p. 2160-4.
59. Calabro, A., et al., Microanalysis of enzyme digests of hyaluronan and chondroitin/dermatan sulfate by fluorophore-assisted carbohydrate electrophoresis (FACE). Glycobiology, 2000. 10(3): p. 273-81.
60. Domachowske, J.B., et al., Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res, 1998. 26(14): p. 3358-63.
61. Esko, J.D. and U. Lindahl, Molecular diversity of heparan sulfate. J Clin Invest, 2001. 108(2): p. 169-73.
62. Jin, L., et al., The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci U S A, 1997. 94(26): p. 14683-8.
63. Fromm, J.R., et al., Pattern and spacing of basic amino acids in heparin binding sites. Arch Biochem Biophys, 1997. 343(1): p. 92-100.
64. Margalit, H., N. Fischer, and S.A. Ben-Sasson, Comparative analysis of structurally defined heparin binding sequences reveals a distinct spatial distribution of basic residues. J Biol Chem, 1993. 268(26): p. 19228-31.
65. Fromm, J.R., et al., Differences in the interaction of heparin with arginine and lysine and the importance of these basic amino acids in the binding of heparin to acidic fibroblast growth factor. Arch Biochem Biophys, 1995. 323(2): p. 279-87.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *