帳號:guest(3.147.47.59)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳以樂
作者(外文):Wu, Yi-Le
論文名稱(中文):I.家禽里奧病毒感染細胞之蛋白質體學分析以鑑定參與病毒感染機制之可能蛋白質 II.外源性雞細胞素白細胞介素1β促進家禽里奧病毒對宿主細胞之感染
論文名稱(外文):Part I:Proteomics Analysis of Avian Reovirus Infected Host Cells to Identify Candidate Proteins Involved in Virus Infection Mechanisms. Part II:Exogenous Chicken Cytokine Interleukin-1β Enhanced Avian Reovirus Infection in Host Cells.
指導教授(中文):殷献生
指導教授(外文):Yin, Hsien-Sheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:9780547
出版年(民國):99
畢業學年度:98
語文別:英文
論文頁數:77
中文關鍵詞:家禽里奧病毒蛋白質體學雞細胞素白細胞介素1□病毒感染2D-DIGE
外文關鍵詞:Avian ReovirusProteomicsChicken Cytokine Interleukin-1□Virus Infection
相關次數:
  • 推薦推薦:0
  • 點閱點閱:90
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
I.家禽里奧病毒感染細胞之蛋白質體學分析以鑑定參與病毒感染機制之可能蛋白質
家禽里奧病毒(Avian reovirus)屬於里奧病毒科(Reoviridae family),是非封套核醣核酸病毒(non-enveloped RNA viruse),具有十條雙股核醣核酸組成其基因體。此類病毒是鳥類重要病源,其感染主要經由糞口傳染途徑,在家禽業中造成可觀的經濟損失。因此,更多地了解病毒感染機制可造福家禽業。蛋白質體學分析是鑑定家禽里奧病毒感染前後宿主細胞蛋白質含量差異全面情形的良好技術。為了瞭解家禽里奧病毒對宿主細胞調控的整體情形,首先以免疫螢光顯微染色方式鑑定家禽里奧病毒感染所造成的細胞股價結構差異,並且以MTT和AlamarBlue檢驗方式確認在感染過程中的細胞活性。2D-DIGE以及其後續的MALDI-TOF MS分析用以鑑定在家禽里奧病毒感染過程中被正調控或負調控的蛋白質,依照不同的功能和細胞內分布區域將這些蛋白質分類,並且以西方墨點法確認2D-DIGE的結果。免疫螢光染色的結果顯示細胞內肌動蛋白(actin)的總量雖然不變但是排列在家禽里奧病毒感染後被改變。AlamarBlue檢測確認在感染過程中不變的細胞活性。2D-DIGE與MALDI-TOF MS檢測鑑定出八十七個在家禽里奧病毒感染過程中表現量受到調控的蛋白質。在這些蛋白質中,PRDX6 (peroxiredoxin 6)、PGAM1 (Phosphoglycerate mutase 1)、PSME3 (Proteasome activator complex subunit 3)、ANXA5 (Annexin A5)、PRDX4 (peroxiredoxin 4)、HSP60 (60 kDa heat shock protein)、SUMO3 (Small ubiquitin-related modifier 3)、VDAC2 (Voltage-dependent anion channel 2)等利用西方墨點法進行確認。這些蛋白質的功能以及在感染過程中的可能的調控機制皆被討論。我們進行了首次對於受家禽里奧病毒感染的雞纖維芽母細胞(chicken fibroblast embryo cells)進行的蛋白質體學測試,所鑑定出表現量有差異的蛋白質所參與的細胞功能包括細胞骨架組成、細胞凋零調控、能量代謝、訊息傳遞以及泛素蛋白酶體途徑(ubiquitin-proteasome pathway),這些數據提供了解家禽里奧病毒感染過程的基本了解,並且促進病毒分子致病研究中可能蛋白質的標定。

II.外源性雞細胞素白細胞介素1β促進家禽里奧病毒對宿主細胞之感染
促炎細胞因子(pro-inflammatory cytokine) 白細胞介素1β□(interleukin-1β)是白細胞介素家族的一員,屬於受病毒感染之細胞主要抗病毒反應之一。白細胞介素1β所引發的訊息傳遞途徑包括吸引MyD88與IL-1RAcP相結合,以及下游活化IRAKs和TRAF6等蛋白質,最終促進NF-κB與AP-1等轉錄因子(transcription factors)的活化。由於在被培養的細胞受家禽里奧病毒感染後之培養上清液中,白細胞介素1β的活性被發現有加強的現象,並且,白細胞介素1β過度表現(overexpression)相連的關節炎徵狀是家禽里奧病毒S1133病毒株感染雞隻後的主要反應,推測在家禽里奧病毒感染過程中白細胞介素1β可能扮演著重要角色。本實驗發現,在對於培養的雞細胞施與外源性雞細胞素白細胞介素1β時,家禽里奧病毒的感染有增強的情形。當細胞先被施與雞白細胞介素1β再受到家禽里奧病毒的感染時,病毒力價、病毒蛋白與核醣核酸量都提高,並且這樣的提升是決定於外加白細胞介素1β量。將白細胞介素1β途徑下游蛋白質MyD88過表現,更進一步地確認白細胞介素1β對於病毒感染的促進效果。白細胞介素1β病毒感染促進效果之可能應用亦被討論。
Part I: Proteomics Analysis of Avian Reovirus Infected Host Cells to Identify Candidate Proteins Involved in Virus Infection Mechanisms.
Avian reoviruses (ARVs) are members of Reoviridae family, which are non-enveloped RNA viruses with 10 double-stranded RNA as genome content. The viruses are important pathogens of birds that are mainly transported through fecal-oral route, causing considerable economic losses in the poultry industry, and thus understanding more about the viral infection mechanism would be beneficial to the poultry industry. Proteomic analysis is a good technique to identify a whole view of the protein quantity differences in the host cell pre- and post-infection by ARV.
To acquire the whole regulatory view of ARV to the host cell, immunofluorescence microscopy was first used to identify the cytoskeleton structure differences caused by ARV infection. The MTT and AlamarBlue assays were performed to verify the cell viability during the infection process. The 2D-DIGE, followed by MALDI-TOF MS analysis, was then used to identify the proteins up- or down-regulated during the ARV infection process. These proteins were classified by different functions and locations. Validation of 2D-DIGE was carried out by Western blot analysis.
The immunofluorescence microscopy showed the arrangement, but not the quantity of cytosol F-actin, was changed after ARV infection. The AlamarBlue assay assured the unchanged cell viability. The 2D-DIGE and MALDI-TOF MS analysis identified 87 proteins with expression level regulated during ARV infection process. Among these proteins, peroxiredoxin 6 (PRDX6), Phosphoglycerate mutase 1 (PGAM1), Proteasome activator complex subunit 3 (PSME3), Annexin A5 (ANXA5), peroxiredoxin 4 (PRDX4), 60 kDa heat shock protein (HSP60), Small ubiquitin-related modifier 3 (SUMO3), and Voltage-dependent anion channel 2 (VDAC2) were used in the validation performed with Western blot analysis. The functions of these proteins and the possible regulatory mechanism in the infection process were then being discussed.
We performed the first analysis of the proteome of chicken fibroblast embryo cells (DF-1) infected with avian reovirus. A series of differentially expressed cellular proteins associated with cytoskeleton components, regulators of apoptosis, energy metabolism, signal transduction, and ubiquitin-proteasome pathways were identified. These data provides the fundamental understanding of processes during ARV infection and facilitates probing the candidates for viral molecular pathogenesis studies.

Part II:□Exogenous Chicken Cytokine Interleukin-1β□Enhanced Avian Reovirus Infection in Host Cells.
The pro-inflammatory cytokine Interleukin-1β (IL-1β) is one of the members of IL-1 family and is belonged to the primary antiviral responses in virus-infected cells. The signal transduction pathway caused by IL-1β involved the recruitment of MyD88 to the IL-1RAcP and the down-stream activation of IRAKs and TRAF6 proteins, which would finally induce the activation of transcription factors such as NF-κB and AP-1. Because the enhanced IL-1β activity was found in culture supernatant of avian reovirus (ARV) infected cell and the IL-1β over expression related symptom arthritis syndrome is the primary effect in ARV strain S1133 infected chicken, it is implied that the chicken IL-1β□may play an important role on ARV infection processes. In this study, we found that ARV infection was enhanced through treatment of exogenous chicken cytokine IL-1β to the cultured chicken cells. The increases of viral titers, viral protein quantities and viral RNA quantities were found while the cells were pretreated by chicken IL-1β before infected by ARV, and the level of increases were depend upon the quantities of added exogenous IL-1β proteins. Overexpression of the down-stream adopter protein MyD88 further proved the IL-1β enhancement. The possible applications of the infection-regulatory role of IL-1β were also discussed.
謝誌 ii
中文摘要 iv
Abstract vii
Part I: 1
Proteomics Analysis of Avian Reovirus Infected Host Cells to Identify Candidate Proteins Involved in Virus Infection Mechanisms 1
Introduction 2
1. The viral components of Avian reovirus 2
2. The proteomic analysis strategies 3
3. The aim of the study 4
Materials and Methods 5
1. Cell and Virus 5
2. Cell viability assays 5
3. Sample preparation for proteomic analysis 6
4. 2D-DIGE and gel image analysis 7
5. Protein staining 9
6. In-gel digestion 9
7. Protein identification by MALDI-TOF MS 10
8. Immunoblotting 11
9. Immunofluorescence 12
Results 14
1. Immunofluorescence Analysis 14
2. Kinetics of Virus–infected Cells 14
3. Two dimensional Polyacrylamide Gel Electrophoresis Image of the ARV-infected and Uninfected DF-1 cells 14
4. Validation of identified proteins through immunoblotting 16
Discussion 17
Part II:□ 37
Exogenous Chicken Cytokine Interleukin-1β□Enhanced Avian Reovirus Infection in Host Cells. 37
Introduction 38
1. The process of IL-1β□protein synthesis 38
2. The signal transduction pathway of IL-1β□ 38
3. The role of IL-1β□in viral infection process 39
4. Aims of this study 40
Material and methods 41
1. ARV infection process and treatment of chicken IL-1β (cIL-1β) combined with ARV 41
2. The morphology of ARV treated or cIL-1β combined with ARV treated cells 42
3. Determination of the viral titers 43
4. Western blot analysis 45
5. RNA purification 46
6. Reverse transcription-polymerase chain reaction (RT-PCR) 47
7. Transfection of pCDNA3.1(+)::His_MyD88 plasmid into DF-1 cells. 48
Results 50
1. Exogenous chicken IL-1β□enhanced cytopathic effect (CPE) severity in ARV infected DF1 cells. 50
2. Exogenous chicken IL-1β□enhanced CPE severity in ARV infected CEF cells. 51
3. Viral titer and viral protein levels also increased by exogenous chicken IL-1β combined with ARV infection. 51
4. The ARV infection enhancement of chicken IL-1β□is dose-dependent. 52
5. The viral titer and the viral protein level enhancement of chicken IL-1β□is also dose-dependent. 53
6. The ARV infection enhancement of chicken IL-1β□was also proved as the cellular viral RNA levels were increased by the chicken IL-1β□treatment. 55
7. Over-expression of MyD88 protein also enhanced ARV infection 55
Discussion 57
Reference 74
1. Olson NO (1978) In: Hofstad, M.S. (Ed.), ARVDisease of Poultry.
2. Jones RC (2000.) Avian reovirus infections. Rev. Sci.Tech. 19:614-625.
3. van der Heide L (2000) The history of avian reovirus. Avian Dis. 44:638-641.
4. Grande A, Rodriguez, E., Costas, C., Everitt, E., Benavente, J. (2000) Oligomerization and cell-binding properties of the avian reovirus cell-attachment protein sigmaC. Virology 274:367-377.
5. O'Hara D PM, Cepica D, Coombs KM, Duncan R. (2001) Avian reovirus major mu-class outer capsid protein influences efficiency of productive macrophage infection in a virus strain-specific manner. J Virol. 75(11):5027-5035.
6. Hsien Sheng Yin J-HS, and Long Huw Lee (2000) Synthesis in Escherichia coli of Avian Reovirus Core Protein σA and Its dsRNA-Binding Activity. Virology 266:33-41.
7. Hsien Sheng Yin aLHL (2000) Characterization of avian reovirus non structural protein σNS synthesized in Escherichia coli Virus Research 67:1-9.
8. Timms JF CR (2008) Difference gel electrophoresis. Proteomics. 8(23-24):4886-4897.
9. Yung Fu Wu HJL, Shiow Her Chiou, and Long Huw Lee (2007) Sequence and phylogenetic analysis of interleukin (IL)-1β-encoding genes of five avian species and structural and functional homology among these IL-1β proteins Veterinary Immunology and Immunopathology 116(1-2):37-46.
10. Wan Yu Wu JHS, Long Huw Lee, and Happy K. Shieh (1994) Analysis of the double-stranded RNA genome segments among avian reovirus field isolates. Journal of Virological Methods 48(1):119-122.
11. Chan HL GS, Gaffney PR, Cramer R, Waterfield MD, Timms JF. (2005) Proteomic analysis of redox- and ErbB2-dependent changes in mammary luminal epithelial cells using cysteine- and lysine-labelling two-dimensional difference gel electrophoresis. Proteomics. 5(11):2908-2926.
12. Gharbi S GP, Yang A, Zvelebil MJ, Cramer R, Waterfield MD, Timms JF. (2002) Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics. 1(2):91-98.
13. Jayme Salsman DT, Christopher Barry, Roy Duncan (2008) A Virus-Encoded Cell–Cell Fusion Machine Dependent on Surrogate Adhesins. PLoS Pathog. 4(3):e1000016.
14. Bedows E RK, Welsh MJ. (1983) Fate of microfilaments in vero cells infected with measles virus and herpes simplex virus type 1. Mol Cell Biol. 3(4):712-719.
15. Bowden DS PJ, Toh BH, Westaway EG. (1987) Distribution by immunofluorescence of viral products and actin-containing cytoskeletal filaments in rubella virus-infected cells. Arch Virol. 92(3-4):211-219.
16. Clarke M, and J. A. Spudich. (1977) Non Muscle contractile proteins: the role of actin and myosin in cell mobility and shape determination. Annu. Rev. Biochem. 46:797-882.
17. Duncan R CZ, Walsh S, Wu S. (1996) Avian reovirus-induced syncytium formation is independent of infectious progeny virus production and enhances the rate, but is not essential, for virus-induced cytopathology and virus egress. Virology. 224(2):453-464.
18. Li-Yen Chang AMA, Sharifah Syed Hassan and Sazaly AbuBakar (2007) Human neuronal cell protein responses to Nipah virus infection. Journal Virology 4(54).
19. Gómez-Puertas P AC, Pérez-Pastrana E, Vivo A, Portela A (2000) Influenza virus matrix protein is the major driving force in virus budding. J Virol. 74:11538-11547.
20. Schreck R RP, Baeuerie PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247-2258.
21. Arai T KS, Brengman ML, Takano M, Smith EH, Goldschmidt-Clermont PJ, Bulkley GB (1998) Ambient but not incremental oxidant generation effects intercellular adhesion molecule 1 induction by tumour necrosis factor α in endothelium. Biochem J 331:853-861.
22. Oppenheim RW (1991) Cell death during development of the nervous system. Annu. Rev. Neurosci. 14: 453–501.
23. Julius L.C. Chulu LHL, Ya C. Lee, Shu H. Liao, Feng L. Lin, Wen L. Shih, Hung J. Liu (2007) Apoptosis induction by avian reovirus through p53 and mitochondria-mediated pathway. Biochemical and Biophysical Research Communications 356:529–535.
24. Sorgato MC MO (1993) Channels in mitochondrial membranes: knowns, unknowns, and prospects for the future. Crit Ret Biochem Mol Biol 28:127-171.
25. Chang LY MAA, Sharifah SH, Abu Sorgato MC, Moran O Bakar S (2006) Nipah virus RNA synthesis in cultured pig and human cells. J Med Virol 78:1105-1112.
26. Myung J, Kim, K.B., Crews, C.M.Myung, J., Kim, K.B., Crews, C.M. (2001) The ubiquitin-proteasome proteolytic pathway and proteasome inhibitors. Med. Res. Rev 21:245–273.
27. Ciechanover A (1994) The ubiquitin-proteasome proteolytic pathway. Cell 79:13–21.
28. Glickman MH, Ciechanover, A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. . Physiol. Rev. 82:373–428.
29. Yu T. Chen CHL, Wen T. Ji, Shu K. Li, Hung J. Liu (2008) Proteasome inhibition reduces avian reovirus replication
and apoptosis induction in cultured cells. Journal of Virological Methods (151):95–100.
30. Young JC, J. M. Barral, and H. F. Ulrich. (2003) More than folding: localized functions of cytosolic chaperones. Trends Biochem. Sci. 28:541–547.
31. Romain Parent XQ, Marie-Anne Petit, and Laura Beretta (2009) The Heat Shock Cognate Protein 70 Is Associated with Hepatitis C Virus Particles and Modulates Virus Infectivity. HEPATOLOGY 49(6):1798-1809.
32. YASUKO SAGARA CI, YUKIKO INOUE, HIROSHI SHIRAKI, AND YOSHIAKI MAEDA (1998) 71-Kilodalton Heat Shock Cognate Protein Acts as a Cellular Receptor for Syncytium Formation Induced by Human T-Cell Lymphotropic Virus Type 1. JOURNAL OF VIROLOGY 72(1):535-541.
33. S. M. Zhang DCS, S. Lou, X. C. Bo, Z. Lu, X. H. Qian, and S. Q. Wang (2005) HBx protein of hepatitis B virus (HBV) can form complex with mitochondrial HSP60 and HSP70. Arch Virol 150:1579–1590.
34. You Jin Hwang SPL, Suk Young Kim, Young Hwan Choi, Min Ji Kim, Choong Ho Lee, Joo Young Lee, and Dae Young Kim (2009) Expression of Heat Shock Protein 60 kDa Is Upregulated in Cervical Cancer. Yonsei Med J 50(3):399-406.
35. Cheung RK, and H. M. Dosch. (1993) The growth transformation of human B cells involves superinduction of hsp70 and hsp90 Virology Virology 193:700–708.
36. Dinarello CA (1996) Biologic basis for interleukin-1 in disease. Blood. 87(6):2095-2147.
37. Wesche H RK, Martin MU (1998) Effects of IL-1 receptor accessory protein on IL-1 binding. FEBSLett 429(3):303-306.
38. Wesche H KC, Kracht M, Falk W, Resch K, Martin MU (1997) The interleukin-1 receptor accessory protein (IL-IRACP) is essential for IL-1-induced activation of interleukin-1 receptor-associated kinase (IRAK) and stress-activated protein kinases (SAP Kinases). JBiol Chem 272(12):7727-7731.
39. Muzio M NJ, Feng P, Dixit VM. (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science. 278(5343):1612-1615.
40. Wesche H HW, Shillinglaw W, Li S, Cao Z (1997) MyD88: an adapter that recruits IRAK to the IL-I receptor complex. Immunity 7(6):837-847.
41. Baud V LZ, Bennett B, Suzuki N, Xia Y, Karin M (1999) Signaling by proinflammatory cytokines: oligomerization of TRAF2 and TRAF6 is sufficient for JNK and IKK activation and target gene induction via an amino-terminal effector domain. Genes Dev 13(10):1297-1308.
42. Ninomiya-Tsuji J KK, Hiyama A, Inoue J, Cao Z, Matsumoto K (1999) The kinase TAKI can activate the NIK-IkB as well as the MAPkinase cascade in the IL-I signalling pathway. Nature 398(6724):252-256.
43. Takaesu G KS, Hiyama A, Yamaguchi K, Shibuya H, Irie K, et al. (2000) TAB2, a novel adaptor protein, mediates activation of TAKI MAPKKK by linking TAKI to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5(4):649-658.
44. Dinarello CA (1984) Interleukin-1 and the pathogenesis of the acute-phase response. N. Engl. J. Med. 311(22):1413-1418.
45. Leonard B. Maggi J, Jason M. Moran, R. Mark L. Buller, and John A. Corbett (2003) ERK activation is required for double-stranded RNA- and virus-induced interleukin-1 expression by macrophages. J Biol Chem. 278(19):16683–16689.
46. Heggen CL QM, Edens FW, Barnes HJ. (2000) Alterations in macrophage-produced cytokines and nitrite associated with poult enteritis and mortality syndrome. Avian Dis. 44(1):59-65.
47. L. VDH (1977) Viral arthritis/tenosynovitis: a review. Avian Pathol. 6(7):271-284.
48. Wu YF LH, Chiou SH, Lee LH. (2007) Sequence and phylogenetic analysis of interleukin (IL)-1β-encoding genes of five avian species and structural and functional homology among these IL-1b proteins. Vet Immunol Immunopathol. 116(1-2):37-46.
49. Martínez-Costas J GA, Varela R, García-Martínez C, Benavente J. (1997) Protein architecture of avian reovirus S1133 and identification of the cell attachment protein. J Virol. 71(1):59-64.
50. Varela R BJ (1994) Protein coding assignment of avian reovirus strain S1133. J Virol. 68(10):6775-6777.
51. Homsy JG JH, Peralta XG, Wu H, Kiehart DP, Bohmann D. (2006) JNK signaling coordinates integrin and actin functions during Drosophila embryogenesis. Dev Dyn. 235(2):427-434.
52. Zhang L DM, Parthasarathy R, Wang L, Mongan M, Molkentin JD, Zheng Y, Xia Y. (2005) MEKK1 transduces activin signals in keratinocytes to induce actin stress fiber formation and migration. Mol Cell Biol. 25(1):60-65.
53. Lin PY LH, Liao MH, Chang CD, Chang CI, Cheng HL, Lee JW, Shih WL. (2010) Activation of PI 3-kinase/Akt/NF-κB and Stat3 signaling by avian reovirus S1133 in the early stages of infection results in an in flammatory response and delayed apoptosis. Virology. 400(1):104-114.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 幽門螺旋桿菌之腺核苷二磷酸七碳糖合成酶HP0858之表現質體建構與結構模擬
2. Crystallization and characterization studies of avian reovirus nonstructural protein μNS and σNS
3. 幽門螺旋桿菌磷酸泛酸醯基乙胺腺苷轉移酶結構與功能之研究
4. 雞細胞激素介白素-1 beta之高解析度結晶學結構顯示與人類介白素-1 beta在受體結合上的差異
5. 由結構與輔酶A的結合試驗比較幽門螺旋桿菌磷酸泛酸醯基乙胺腺苷轉移酶與其突變種的差異
6. 功能性上的研究幽門桿菌中正常和突變的磷酸泛酸醯基乙胺腺苷轉移酶,並比較其差異性
7. 由幽門螺旋桿菌磷酸泛酸醯基乙胺腺苷轉移酶與其突變種的正向活性試驗分析參與活化的重要胺基酸
8. Structural and reverse kinetics analysis of substrate binding to the phosphopantetheine adenylyltransferase and its mutants from Helicobacter pylori
9. I. 環形序列重組對雞之介白素-1乙型結構與功能的影響 II. 雞之介白素-1受體拮抗蛋白其結構與功能的分析
10. 從結構及正反應酵素動力學的角度去分析胃幽門螺旋桿菌中正常和突變的磷酸泛酸醯基乙胺腺苷轉移酶與受質結合的情形來做藥物設計
11. 家禽介白素-1β結構生物學特性與臨床應用及其對家禽里奧病毒感染宿主細胞之影響
12. 研究果蠅谷氨醯胺合成酶II的蛋白質結構及酵素動力學
13. Biological analysis and application of IL-1 family
14. 探討胺基末端和催化位點突變在果蠅谷氨酰胺合成酶II中的關鍵作用
15. 豬介白素-1之結構,功能,包覆性微顆粒以及作為豬生殖呼吸綜合症疫苗佐劑之應用
 
* *