帳號:guest(3.144.193.129)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許成凱
作者(外文):Hsu, Cheng-Kai
論文名稱(中文):Producing Recombinant Hemagglutinin Protein of H5N1 Avian Influenza Viruses in Chinese Hamster Overy (CHO) Cells Using Dihydrofolate Reductase and Dihydrofolate Reductase-RNA Interference
論文名稱(外文):利用中國倉鼠卵巢(CHO)細胞與二氫葉酸還原酶及其核醣核酸干擾表現H5N1禽流感血球凝集素重組蛋白
指導教授(中文):吳夙欽
指導教授(外文):Wu, Suh-Chin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:9780549
出版年(民國):100
畢業學年度:99
語文別:中文
論文頁數:71
中文關鍵詞:中國倉鼠卵巢細胞二氫葉酸還原酶核醣核酸干擾流感血球凝集素重組蛋白
外文關鍵詞:Chinese Hamster Overy CellDihydrofolate ReductaseRNA InterferenceInfluenza Viruses Recombinant Hemagglutinin Protein
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
中文摘要
在全球各地每年都有人因感染流行性感冒而生病或是死亡,感染人類的流感病毒主要是由A型流感病毒所造成,而近年來高致病性的禽流感病毒株爆發,更可能會引起普遍性的大流行,根據世界衛生組織統計,近年來禽流感的致死率高於60%。在過去六十年之內,疫苗在對抗禽流感病毒入侵算是最有效的方法;禽流感病毒膜表面上有兩個醣蛋白,分別是Hemagglutinin(HA)與Neuraminidase(NA),HA蛋白是禽流感病毒與人體細胞結合的主要接收器,並且也是最主要能夠產生強力的免疫反應的蛋白,在本篇實驗中,我在中國倉鼠卵巢細胞中表現序列最佳化的禽流感H5HA蛋白與GCN4結合,幫助重組的蛋白分泌出細胞外。
中國倉鼠卵巢細胞和二氫葉酸還原酶基因增幅系統已經被廣泛應用在生技製藥產業,用於生產穩定的中國倉鼠卵巢細胞株,用以製造重組的藥用蛋白。本篇研究使用了在基因增幅選擇法中加入以dhfr為標的之RNA干擾載體sd2與驅動dhfr的弱啟動子pHSV-TK去改善並選擇具有HA蛋白高度生產力的中國倉鼠卵巢細胞株;首先,由弱啟動子pHSV-TK驅動所能轉錄出的RNA量較少,並且dhfr的RNA干擾性載體sd2可使dhfr mRNA被切開,因此dhfr的細胞複製數被迫需增加,進而去提高在dhfr基因表現缺失的中國倉鼠卵巢細胞中,在dhfr下游的重組流感HA蛋白表現量提升,並希望以生產出大量醣化後的流感HA蛋白當作次單位疫苗來針對近年來流行的禽流感做有效的防範。結果發現以RNA干擾性載體sd2與不論是強啟動子或弱啟動子的dhfr基因載體一起使用是比只有單一使用弱啟動子的dhfr基因載體來的好。
Abstract
Influenza infection cause human morbidity and death worldwide in every year. Infectous human influenza virus is major formed by influenza A virus. High pathogenic avian influenza viruses perhaps cause outbreak of pandemic, recently. According to World Health Organization estimates, the mortality of H5N1 in humans is greater than 60%. Over the past 60 years, vaccination has been the most effective method to protect the population against avian influenza virus infection. Hemagglutinin (HA), a glycoprotein on the surface of influenza virus, is responsible for major receptor binding to human cells, and mainly as a target for vaccine development.
Chinese Hamster Ovary cells (CHO) and dihydrofolate reductase (dhfr)/methotrexate (MTX) gene amplification system are commonly used in biopharmaceutical industry to generate stable expressing recombinant proteins CHO cell clones. In this study, I expressed the optimizing H5HA protein coding sequence conjugated with GCN4 in CHO cells to produce secreted recombinant HA proteins. During gene amplification, we used dhfr-targeting RNA silencing vector (sd2) and Herpes simplex virus thymidine kinase weak promoter (pHSV-TK-driven dhfr) to weaken DHFR expression for improvement of high producer CHO cell clones selection. The high producer cell clones with sd2 and pHSV-TK-driven dhfr would be selected and could be used for mass producing recombinant HA glycoprotein subunit vaccine. These studies suggest that the incorporation of psd2 silencing vector with either strong or weak promoter vectors were better than the use of weak promoter vector only.
目錄
圖片列表............................................................8
1. 序言,研究背景,動機和目標.........................................9
1.1流感病毒血球凝集素蛋白........................................9
1.2哺乳動物細胞表現系統.........................................10
1.3在動物細胞之中表現載體的設計.................................11
1.4在動物細胞之中過渡性與穩定性轉染對蛋白的表現.................13
1.5中國倉鼠卵巢細胞表現系統.....................................15
1.6二氫葉酸還原酶基因增幅原理...................................17
1.7微型核糖核酸干擾作用.........................................18
1.8改良在中國倉鼠卵巢細胞中重組蛋白的生產方法...................19
1.9研究目的.....................................................20
2. 材料與方法......................................................22
2.1質體的建構...................................................22
2.2聚合酶連鎖反應(PCR) .........................................23
2.3 PCR產物純化與DNA黏合.......................................24
2.4質體轉換與定序...............................................24
2.5酵素的切取與建構完成的質體...................................25
2.6細胞的培養與轉染作用.........................................26
2.7 EndoH與PNGaseF作用.........................................27
2.8 SDS膠體電泳法...............................................27
2.9西方墨點法...................................................28
2.10基因放大和穩定細胞株的篩選..................................28
2.11酵素連結免疫吸附法(ELISA) ..................................29
2.12定量性聚合酶連鎖反應........................................30
3. 實驗結果........................................................31
3.1重組流感H5HA蛋白表現在不同的哺乳動物細胞....................31
3.2重組流感H5HA蛋白的醣化現象..................................32
3.3不同組別載體DNA過渡性轉染在CHO/dhFr-細胞的作用..............32
3.4經過MTX作用後不同組別間細胞的存活情形.......................33
3.5經過MTX作用後不同組別間產生的流感HA蛋白量與dhfr基因
複製數情形..................................................34
4. 討論............................................................36
5. 參考文獻........................................................40
6. 表格............................................................54
7. 圖片............................................................55
參考文獻

Assaraf, Y.G., Schimke, R.T. (1987). Identification of methotrexate transport deficiency in mammalian cells using fluoresceinated methotrexate and flow cytometry. Proc Natl Acad Sci U S A Oct;84(20):7154-8.

Backliwal, G., Hildinger, M., Chenuet, S., Wulhfard, S., De Jesus, M., Wurm, F. M. (2008). Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1g/l by transient transfection under serum-free conditions. Nucleic Acids Res 36(15):e96.

Bebbington, C.R., Renner, G., Thomson, S., King, D., Abrams, D., Yarranton, G.T. (1992). High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology (N Y) Feb;10(2):169-75.

Bell, A.C., Felsenfeld, G. (1999). Stopped at the border: boundaries and insulators. Curr Opin Genet Dev. Apr;9(2):191-8.

Benton, T., Chen, T., McEntee, M., Fox, B., King, D., Crombie, R., Thomas, T.C., Bebbington, C. (2002). The use of UCOE vectors in combination with a preadapted serum free, suspension cell line allows for rapid production of large quantities of protein. Cytotechnology Jan;38(1-3):43-6.

Bright, R.A., Ross, T.M., Subbarao, K., Robinson, H.L., Katz, J.M. (2003). Impact of glycosylation on the immunogenicity of a DNA-based influenza H5 HA vaccine. Virology Apr 10;308(2):270-8.

Brummelkamp, T.R., Bernards, R., Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science Apr 19;296(5567):550-3. Epub Mar 21.

Butler, M. (2005). Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol Aug;68(3):283-91. Epub Apr 16.

Cacciatore, J.J., Chasin, L.A., Leonard, E.F. (2010). Gene amplification and vector engineering to achieve rapid and high-level therapeutic protein production using the Dhfr-based CHO cell selection system. Biotechnol Adv. Apr 21.

Chambers, T.M., Kawaoka, Y., Webster, R.G. (1988). Protection of chickens from lethal influenza infection by vaccinia-experssed hemagglutinin. Virology 167(2):414-421.

Chang, C.Y., Hong, W.W., Chong, P., Wu, S.C. (2006). Influence of intron and exon splicing enhancers on mammalian cell expression of a truncated spike protein of SARS-CoV and its implication for subunit vaccine development. Vaccine Feb 20;24(8):1132-41. Epub 2005 Sep 16.

Chen, C., Chasin, L.A. (1998). Cointegration of DNA molecules introduced into mammalian cells by electroporation. Somat Cell Mol Genet Sep;24(5):313.

Chung, J.Y., Kim, T.K., Lee, G.M. (2000). Morphological selection of parental Chinese hamster ovary cell clones exhibiting high-level expression of recombinant protein. Korea Advanced Institute of Science and Technology, Taejon, Korea.

Cockett, M.I., Bebbington, C.R., Yarranton, G.T. (1990). High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Biotechnology (N Y) Jul;8(7):662-7.

Crawford, J., Wilkinson, B., Vosnesensky, A., Smith, G., Garcia, M., Stone, H., Perdue, M.L. (1999). Baculovirus-derived hemmagglutinin vaccines protect against lethal influenza infections by H5 and H7 subtypes. Vaccine 17(18):2265-2274.

Cullen, B. R. (2006). Induction of stable RNA interference in mammalian cells. Gene therapy 13, 503-508.

De, B.K., Shaw, M.W., Rota, P.A., Harmon, M.W., Esposito, J.J., Rott, R., Cox, N.J., Kendal, A.P. (1988). Protection against virulent H5 avian influenza virus infection in chickens by an inactivated vaccine produced with recombinant vaccinia virus. Vaccine 6(3):257-261.

Dykxhoorn, D.M., Novina, C.D., Sharp, P.A. (2003). Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol Jun;4(6):457-67.

Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., Mello, C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature Feb 19;391(6669):806-11.

Gandor, C., Leist, C., Fiechter, A., Asselbergs, F.A. (1995). Amplification and expression of recombinant genes in serum-independent Chinese hamster ovary cells. FEBS Lett Dec 27;377(3):290-4.

Genzel, Y., Reichl, U. (2009). Continuous cell lines as a production system for influenza vaccines. Expert Rev Vaccines. Dec;8(12):1681-92.

Girod, P.A., Nguyen, D.Q., Calabrese, D., Puttini, S., Grandjean, M., Martinet, D., Regamey, A., Saugy, D., Beckmann, J.S., Bucher, P., Mermod, N. (2007). Genome-wide prediction of matrix attachment regions that increase gene expression in mammalian cells. Nat Methods Sep;4(9):747-53. Epub Aug 5.

Gwizdek, C., Ossareh-Nazari, B., Brownawell, A.M., Doglio, A., Bertrand, E., Macara, I.G., Dargemont, C. (2003). Exportin-5 mediates nuclear export of minihelix-containing RNAs. J Biol Chem Feb 21;278(8):5505-8. Epub Dec 30.

Haber, D.A., Beverley, S.M., Kiely, M.L., Schimke, R.T. (1981). Properties of an altered dihydrofolate reductase encoded by amplified genes in cultured mouse fibroblasts. J Biol Chem Sep 25;256(18):9501-10.

Hartshorn, K.L., Webby, R., White, M.R., Tecle, T., Pan, C., Boucher, S., Moreland, R.J., Crouch, E.C., Scheule, R.K. (2008). Role of viral hemagglutinin glycosylation in anti-influenza activities of recombinant surfactant protein D. Respir Res Sep 23;9:65.

Henikoff, S. (1992). Position effect and related phenomena. Curr Opin Genet Dev. 1992 Dec;2(6):907-12.

Hong, W.W., Wu, S.C. (2007). A novel RNA silencing vector to improve antigen expression and stability in Chinese hamster ovary cells. Vaccine May 16;25(20):4103-11. Epub Feb 26.

Hong, W.W., Yen, Y.H., Wu, S.C. (2007). Enhanced antibody affinity to Japanese encephalitis virus E protein by phage display. Biochem Biophys Res Commun Apr 27;356(1):124-8. Epub Mar 1.

Horimoto, T., Kawaoka, Y. (2005). Influenza: lessons from past pandemics, warnings from current incidents. Nat Rev Microbiol Aug;3(8):591-600.

Huang, Y., Li, Y., Wang, Y.G., Gu, X., Wang, Y., Shen, B.F. (2007). An efficient and targeted gene integration system for high-level antibody expression. J Immunol Methods Apr 30;322(1-2):28-39. Epub Feb 26.

Ito, T., Kawaoka, Y. (2000). Host-range barrier of influenza A viruses. Vet Microbiol May 22;74(1-2):71-5.

Jayapal, K.P., Wlaschin, K.F., Hu, W.S., Yap, M.G.S. (2007). Recombinant protein therapeutics from CHO cells-20 years and counting. Chem Eng Prog 103:40-52.

Jun, S.C., Kim, M.S., Hong, H.J., Lee, G.M. (2006). Limitations to the development of humanized antibody producing Chinese hamster ovary cells using glutamine synthetase-mediated gene amplification. Biotechnol Prog May-Jun;22(3):770-80.

Kalthoff, D., Giritch, A., Geisler, K., Bettmann, U., Klimyuk, V., Hehnen, H.R., Gleba, Y., Beer, M. (2010). Immunization with plant-expressed hemagglutinin protects chickens from lethal highly pathogenic avian influenza virus H5N1 challenge infection. J Virol. Nov;84(22):12002-10. Epub 2010 Sep 1.

Kaufman, R.J. (1990). Selection and coamplification of heterologous genes in mammalian cells. Methods Enzymol 185:537-66.

Kaufman, R.J., Schimke, R.T. (1981). Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line. Mol cell boil 1(12):1069-76.

Kellems, R.E. (1991). Gene amplification in mammalian cells: strategies for protein production. Curr Opin Biotechnol Oct;2(5):723-9.

Khurana, S., Verma, S., Verma, N., Crevar, C.J., Carter, D.M., Manischewitz, J., King, L.R., Ross, T.M., Golding, H. (2010). Properly folded bacterially expressed H1N1 hemagglutinin globular head and ectodomain vaccines protect ferrets against H1N1 pandemic influenza virus. PLoS One. Jul 12;5(7):e11548.

Kim, J.M., Kim, J.S., Park, D.H., Kang, H.S., Yoon, J., Baek, K., Yoon, Y. (2004). Improved recombinant gene expression in CHO cells using matrix attachment regions. J Biotechnol Jan 22;107(2):95-105.

Kito, M., Itami, S., Fukano, Y., Yamana, K., Shibui, T. (2002). Construction of engineered CHO strains for high-level production of recombinant proteins. Appl Microbiol Biotechnol. Dec;60(4):442-8.

Kwaks, T.H., Barnett, P., Hemrika, W., Siersma, T., Sewalt, R.G., Satijn, D.P., Brons, J.F., van Blokland, R., Kwakman, P., Kruckeberg, A.L., Kelder, A., Otte, A.P. (2003). Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat Biotechnol May;21(5):553-8. Epub Apr 7.

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Rådmark, O., Kim, S., Kim, V.N. (2003). The nuclear RNase III Drosha initiates microRNA processing. Nature Sep 25;425(6956):415-9.

Lim, S.F., Chuan, K.H., Liu, S., Loh, S.O., Chung, B.Y., Ong, C.C., Song, Z. (2006). RNAi suppression of Bax and Bak enhances viability in fed-batch cultures of CHO cells. Metab Eng Nov;8(6):509-22. Epub Jun 7.

Lin, S. C., Leng, C.H., Wu, S.C. (2010). Generating stable Chinese hamster ovary cell clones to produce a truncated SARS-CoV spike protein for vaccine development. Biotechnol Prog. Nov-Dec;26(6):1733-40. doi: 10.1002/btpr.480.

Lin, Y.J., Deng, M.C., Wu, S.H., Chen, Y.L., Cheng, H.C., Chang, C.Y., Lee, M.S., Chien, M.S., Huang, C.C. (2008). Baculovirus-derived hemagglutinin vaccine protects chickens from lethal homologous virus H5N1 challenge. J Vet Med Sci. Nov;70(11):1147-52.

Loureiro, S., Ren, J., Phapugrangkul, P., Colaco, C.A., Bailey, C.R., Shelton, H., Molesti, E., Temperton, N.J., Barclay, W.S., Jones, I.M. (2010). Adjuvant free immunisation with Hemagglutinin-Fc fusion proteins as an approach to influenza vaccines. J Virol. Dec 29.

McManus, M.T., Sharp, P.A. (2002). Gene silencing in mammals by small interfering RNAs. Nat Rev Genet Oct;3(10):737-47.

Moremen, K. W. & Molinari, M. (2006). N-linked glycan recognition and processing: the molecular basis of endoplasmic reticulum quality control. Curr opin struct Biol 16, 592-599.

Mori, K., Kuni-Kamochi, R., Yamane-Ohnuki, N., Wakitani, M., Yamano, K., Imai, H., Kanda, Y., Niwa, R., Iida, S., Uchida, K., Shitara, K., Satoh, M. (2004). Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng Dec 30;88(7):901-8.

Morrow, J.K. (2008). Optimizing transient gene expression: applications expected to move beyond discovery and the preclinical to clinical realm. Gene Eng Biotechnol News 28(5):54-9.

Ng, S.K., Lin, W., Sachdeva, R., Wang, D.I., Yap, M.G. (2010). Vector fragmentation: characterizing vector integrity in transfected clones by Southern blotting. Biotechnol Prog Jan;26(1):11-20.

Ng, S.K., Wang, D.I., Yap, M.G. (2007). Application of destabilizing sequences on selection marker for improved recombinant protein productivity in CHO-DG44. Metab Eng May;9(3):304-16. Epub Feb 14.

Novina,C.D., Sharp, P.A. (2004). The RNAi revolution. Nature Jul 8;430(6996):161-4.

Omasa, T. (2002). Gene amplification and its application in cell and tissue engineering. J Biosci Bioeng 94(6):600-5.

Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J., Conklin, D.S. (2002). Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev Apr 15;16(8):948-58.

Page, M.J., Sydenham, M.A. (1991). High level expression of the humanized monoclonal antibody Campath-1H in Chinese hamster ovary cells. Biotechnology (N Y) Jan;9(1):64-8.

Pallavicini, M.G., Rosette, C., Reitsma, M., Deteresa, P.S., Gray, J.W. (1990). Relationship of c-myc gene copy number and gene expression: cellular effects of elevated c-myc protein. J Cell Physiol May;143(2):372-80.

Pearson, S. (2007). Producing protein therapeutics by mammalian cell culture. Bioprocess Int 5:30-7.

Running Deer, J., Allison, D.S. (2004). High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1alpha gene. Biotechnol Prog May-Jun;20(3):880-9.

Schimke, R.T., Alt, F.W., Kellems, R.E., Kaufman, R.J., Bertino, J.R. (1978). Amplification of dihydrofolate reductase genes in methotrexate-resistant cultured mouse cells. Cold Spring Harb Symp Quant Biol 42 Pt 2:649-57.

Schuck, S., Manninen, A., Honsho, M., Füllekrug, J., Simons, K. (2004). Generation of single and double knockdowns in polarized epithelial cells by retrovirus-mediated RNA interference. Proc Natl Acad Sci U S A Apr 6;101(14):4912-7. Epub Mar 29.

Schultz-Cherry, S., Dybing, J.K., Davis, N.L., Williamson, C., Suarez, D.L., Johnston, R., Perdue, M.L. (2000). Influenza virus (A/HK/156/97) hemagglutinin expressed by an alphavirus replicon system protects chickens against lethal infection with Hong Kong-origin H5N1 viruses. Virology 278(1):55-59.

Seth, G., Charaniya, S., Wlaschin, K.F., Hu, W.S. (2007). In pursuit of a super producer-alternative paths to high producing recombinant mammalian cells. Curr Opin Biotechnol Dec;18(6):557-64. Epub Dec 21.

Shoji, Y., Farrance, C.E., Bi, H., Shamloul, M., Green, B., Manceva, S., Rhee, A., Ugulava, N., Roy, G., Musiychuk, K., Chichester, J.A., Mett, V., Yusibov, V. (2009). Immunogenicity of hemagglutinin from A/Bar-headed Goose/Qinghai/1A/05 and A/Anhui/1/05 strains of H5N1 influenza viruses produced in Nicotiana benthamiana plants. Vaccine. May 26;27(25-26):3467-70. Epub 2009 Feb 5.

Skehel, J.J., Stevens, D.J., Daniels, R.S., Douglas, A.R., Knossow, M., Wilson, I.A., Wiley, D.C. (1984). A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proc Natl Acad Sci U S A Mar;81(6):1779-83.

Skehel, J.J., Wiley, D.C. (2000). Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem ;69:531-69.

Song, L., Zhang, Y., Yun, N.E., Poussard, A.L., Smith, J.N., Smith, J.K., Borisevich, V., Linde, J.J., Zacks, M.A., Li, H., Kavita, U., Reiserova, L., Liu, X., Dumuren, K., Balasubramanian, B., Weaver, B., Parent. J., Umlauf, S., Liu, G., Huleatt, J., Tussey, L., Paessler, S. (2009). Superior efficacy of a recombinant flagellin:H5N1 HA globular head vaccine is determined by the placement of the globular head within flagellin. Vaccine. Sep 25;27(42):5875-84. Epub 2009 Aug 3.

Sung, Y.H., Hwang, S.J., Lee, G.M. (2005). Influence of down-regulation of caspase-3 by siRNAs on sodium-butyrate-induced apoptotic cell death of Chinese hamster ovary cells producing thrombopoietin. Metab Eng Sep-Nov;7(5-6):457-66. Epub Sep 19.

Swayne, D.E., Kapczynski, D. (2008). Strategies and challenges for eliciting immunity against avian influenza virus in birds. Immunol Rev Oct;225:314-31.

Urlaub, G., Chasin, L.A. (1980). Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc Natl Acad Sci U S A. Jul;77(7):4216-20.

Walsh, G., Jefferis, R. (2006). Post-translational modifications in the context of therapeutic proteins. Nature biotechnology 24, 1241-1252.

Walsh, G. (2006). Biopharmaceuticals: recent approvals and likely directions. Trends Biotechnol 23, 553-8.

Wang, C.C., Chen, J.R., Tseng, Y.C., Hsu, C.H., Hung, Y.F., Chen, S.W., Chen, C.M., Khoo, K.H., Cheng, T.J., Cheng, Y.S., Jan, J.T., Wu, C.Y., Ma, C., Wong, C.H. (2009). Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc Natl Acad Sci U S A. Oct 27;106(43):18137-42. Epub 2009 Oct 12.

Wei, C.J., Xu, L., Kong, W.P., Shi, W., Canis, K., Stevens, J., Yang, Z.Y., Dell, A., Haslam, S.M., Wilson, I.A., Nabel, G.J. (2008). Comparative efficacy of neutralizing antibodies elicited by recombinant hemagglutinin proteins from avian H5N1 influenza virus. J Virol. Jul;82(13):6200-8. Epub 2008 Apr 16.

White, J., Kartenbeck, J., Helenius, A. (1982). Membrane fusion activity of influenza virus. EMBO J ;1(2):217-22.

Wu, S.C. (2009). RNA interference technology to improve recombinant protein production in Chinese hamster ovary cells. Biotechnol Adv. Jul-Aug;27(4):417-22. Epub 2009 Mar 14.

Wu, S.C., Hong, W.W., Liu, J.H. (2008). Short hairpin RNA targeted to dihydrofolate reductase enhances the immunoglobulin G expression in gene-amplified stable Chinese hamster ovary cells. Vaccine Sep 8;26(38):4969-74. Epub Jul 9.

Wurm, F.M. (2004). Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22, 1393-1398.

Wurm, F.M., Gwinn, K.A., Kingston, R.E. (1986). Inducible overproduction of the mouse c-myc protein in mammalian cells. Proc Natl Acad Sci U S A Aug;83(15):5414-8.

Yi, R., Qin, Y., Macara, I.G., Cullen, B.R. (2003). Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev Dec 15;17(24):3011-6. Epub Dec 17.

Yoshikawa, T., Nakanishi, F., Ogura, Y., Oi, D., Omasa, T., Katakura, Y., Kishimoto, M., Suga, K. (2000). Amplified gene location in chromosomal DNA affected recombinant protein production and stability of amplified genes. Biotechnol prog Sep-Oct;16(5):710-5.

Zahn-Zabal, M., Kobr, M., Girod, P.A., Imhof, M., Chatellard, P., de Jesus, M., Wurm, F., Mermod, N. (2001). Development of stable cell lines for production or regulated expression using matrix attachment regions. J Biotechnol Apr 27;87(1):29-42.
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *