帳號:guest(3.147.85.201)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳信安
作者(外文):Chen, Sin-An
論文名稱(中文):應用於雷射加工系統之繞射式雷射光束整形及分光元件
論文名稱(外文):Diffractive Beam Shaper and Splitter for Laser Processing System
指導教授(中文):陳政寰
指導教授(外文):Chen, Cheng-Huan
口試委員(中文):陳政寰
田仲豪
施至柔
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:9833591
出版年(民國):100
畢業學年度:99
語文別:中文
論文頁數:115
中文關鍵詞:繞射光學繞射光柵光束整形
外文關鍵詞:Diffractive opticsDiffraction gratingBeam shaping
相關次數:
  • 推薦推薦:0
  • 點閱點閱:205
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
自從雷射問世以來,其相關的產業就一直不斷的蓬勃發展,不論是在消費性電子產品、顯示技術開發抑或是工業製程用途,均可看到雷射所帶來的革命性突破,例如在光碟讀取、雷射投影機、立體顯示、雷射加工及太陽能或面板製程上,雷射的應用可說是無所不在。
雷射加工隨著科技的進步,其應用的層面也越來越廣泛。現今雷射除了可以用來進行精密製造加工外,在太陽能或面板製程上雷射也時常被用來作退火再結晶的製程。在雷射的應用裡,最常見的雷射光調變為光束整形以及分光兩種功能,而雷射自共振腔激發出來一般皆為高斯雷射光束,其中心能量較高而邊緣較低的特性使其在加工上並不適合直接拿來應用,而必須將高斯雷射整形成為均勻能量分佈之雷射光束。另一方面,面臨日益增大的加工面積以及為了增加加工的速度和效率,將單一道加工用之雷射光束進行複製使其成為多道具圖案化之加工用雷射可滿足大面積之加工範圍以及大幅度提升加工效率。
光束整形以及分光可以藉由折射、反射或繞射原理來達成,而本研究所提出的為設計繞射式整形以及分光元件。整形元件在設計上連續相位調變可以將入射光束完美的整形成平頂化圓形或方形光斑,但是在製造方面上因無法製作出連續的曲面結構,因此必須將連續曲面以階梯化結構近似進行實作,本研究將以四階之繞射整形元件進行實驗驗證,而繞射分光元件則為二元已階梯化之光柵結構,因此不需再近似可直接進入製程步驟,在此所使用的製程為先利用半導體製程將相位微結構蝕刻在矽晶圓,再利用翻模的方式轉印到透光材料上,接著將以繞射整形和分光元件整合作為未來開發複合式雷射加工模組系統的基礎。
Since the advent of lasers in 1960s, more and more fields of applications have been investigated and developed greatly. Nowadays, various applications of lasers including consumer electronics, display technology or material processing have affected the development of technology and launch a breakthrough in modern optoelectronics.
Laser plays an important role in high-precision material processing. It can be used in cutting, laser annealing or laser ablation, etc. In laser applications, it is usually required to modulate laser for beam shaping and beam splitting. However, most lasers possess Gaussian distribution, which is not adequate for uniform processing. Therefore, it is often required to transform laser into top-hat energy distribution with least energy loss as possible. On the other hand, in order to meet the demands for large area processing and high manufacturing efficiency, it is desired to replicate the single top-hat beam into multiple top-hat beams.
Beam shaping and beam splitting can be achieved by refraction, reflection or diffraction. The purpose of the thesis is to design diffractive optical elements (DOE) to modulate laser to fulfill above-mentioned concepts. With regards to the fabrication of DOEs, continuous phase modulation is quantized into four-level surface relief pattern. The DOEs are fabricated by using semi-conductor manufacturing technology and UV curing. Then, the DOEs are integrated together and analyzed to realize the multiple top-hat spots for the laser application module.
摘要 I
Abstract III
誌謝 V
目錄 VI
圖目錄 X
表目錄 XVII
第一章 緒論 1
1.1 背景與動機 1
1.2 研究目標 4
第二章 雷射光束調變相關技術探討 5
2.1雷射光束整形文獻回顧 6
2.1.1 光罩式整形元件原理 (Mask & Aperture) 6
2.1.2 反射式整形元件原理 7
2.1.3 折射式整形元件原理 8
2.1.4 混光式整形元件原理 10
2.1.5 繞射式整形元件原理 11
2.1.6 其他種光束整形原理 13
2.2 雷射光束分光文獻回顧 14
2.2.1 半反射鏡 (Partial Reflection and Transmission Mirror) 15
2.2.2 繞射光柵分光原理 16
2.2.3 其他種光束分光原理 17
2.3 雷射光束整形以及光束分光技術比較 19
第三章 繞射光學原理 21
3.1 純量繞射理論 (Scalar diffraction theory) 22
3.1.1 亥姆霍茲與克希何夫積分理論 24
3.1.2 Rayleigh-Sommerfeld Diffraction Formula 27
3.2 近場及遠場繞射 (Fresnel and Fraunhofer diffraction) 29
3.2.1 近場菲涅爾繞射 29
3.2.2 遠場繞射(Fraunhofer diffraction) 32
第四章 繞射整形分光元件的設計 34
4.1繞射式整形元件設計原理 34
4.2 疊代傅立葉演算法(IFTA) 37
4.3 繞射式分光元件設計原理 40
4.4 梯度演算法 43
4.4.1 梯度演算法應用於相位計算 44
4.4.2 梯度演算法應用於計算光柵結構 46
第五章 繞射整形暨分光元件設計流程與結果 50
5.1 DOE-CAD繞射整形元件設計結果 53
5.2 MATLAB繞射整形元件設計結果 58
5.3連續相位降階後的影響 60
5.4 梯度演算法應用於降階後的優化 64
5.5 降階後的優化結果 65
5.6分光元件之設計流程與結果 67
第六章 繞射元件的製造 72
6.1 半導體製程-黃光微影蝕刻製程 73
6.1.1光罩製作 73
6.1.2曝光微影 75
6.1.3 矽晶圓蝕刻 76
6.1.4 矽晶圓轉印至透光材料製程 80
6.2 曝光微影蝕刻製程誤差討論 81
第七章 繞射整形暨分光元件實驗量測 83
7.1繞射整形元件實驗量測 83
7.1.1 DOECAD設計元件實驗驗證 85
7.1.2 MATLAB設計元件實驗驗證 87
7.2 繞射分光元件實驗驗證 93
第八章 雷射加工系統光路模擬 94
8.1整形及分光元件的模擬驗證 94
8.2 多光束平頂化雷射加工系統光路模擬 96
8.2.1 第一種雷射光路模組架構 97
8.2.2第二種雷射光路模組架構 101
8.2.3第三種雷射光路模組架構 102
8.3 三種光路架構比較 106
第九章 結論與未來工作 108
參考文獻 109
[1]http://www.optoiq.com/index/market-research.html
[2]M. R. Taghizadeh, P. Blair, K. Balluder, A.J. Waddie, P. Rudman, N. Ross, ‘‘Design and fabrication of diffractive elements for laser material processing applications’’ Optics and Lasers in Engineering 34 (2000) 289-307
[3]Fred M. Dickey, Scott C. Holswade, David L. Shealy, Laser Beam Shaping Applications (Taylor & Francis, 2006), Chap. 8
[4]Richard M. Foster, Edmond Turcu, Jose M. Sasian, Harry Rieger, James M. Morris, Shaped Source of Soft X-Ray, ‘‘Extreme Ultraviolet and Ultraviolet Radiation’’ US patent 6307913 B1
[5]Xinbing Liu, ‘‘Laser Beam Homogenization by Scanning a Beam onto a Mask’’ US patent 6574024 B1
[6]Nandor Bokor, Nir Davidson, “Anamorphic, adiabatic beam shaping of diffuse light using a tapered reflective tube” Optics Communications 201 (2002) 243-249
[7]Peter J. Klopotek, “Beam Homogenizer” US patent 5109465
[8]Paul Rasmussen, Anthony Bernhardt, “Coherence Delay Augmented Laser Beam Homogenizer” US patent 5224200
[9]Toshimitsu TAKAOKA, Naoki KAWANO, Yasuhiro AWATSUJI, Toshihiro KUBOTA, “Design of a Reflective Aspherical Surface of a Compact Beam-Shaping Device” Optical Review Vol. 13 No. 2 (2006) 77-86
[10]S Zhang, “A simple bi-convex refractive laser beam shaper” Journal of Optics A: Pure and Applied Optics 9 (2007) 945-950
[11]John Allen Hoffnagle, Carl Michael Jefferson, “Refractive optical system that converts a laser beam to a collimated flat-top beam” US patent 6295168 B1
[12]國家實驗研究院儀器科技研究中心,“光學研究精密製造與檢測”
[13]Jejjrey J. Kasinski, Ralph L. Burnham, “Near-diffraction-limited laser beam shaping with diamond-turned aspheric optics” Optics Letters Vol. 22 No. 14 1997
[14]Zhaohui H. Yang, James R. Leger, “Fabrication of large-sag aspheric Micro-optics with nanometer accuracy using electron-beam lithography of curved substrates” Optical Engineering 45(4), 043401 (April 2006)
[15]Yoshi Adachi, “Optical system to obtain uniform illumination from diode laser” US patent 5373395
[16]David L. Shealy, Shao-Hua Chao, “Geometric optics-based design of laser beam shapers” Opt. Eng. 42(11) 3123-3138 (November 2003)
[17]Francis Cayer, “Rectangular flat-top beam shaper” US patent 2008
[18]Dominique M. Dagenais, “Method and apparatus for optical beam shaping” US patent 4518232
[19]David K. Fork, “Narrow-pitch beam homogenizer” US patent 5699191
[20]Daniele Murra, Sarah Bollanti, Paolo Di Lazzaro, “Optical system for homogenization of light beams, with variable cross-section output” US patent 6639728
[21]Theodore S. Fahlen, Sheldon B. Hutchison, Timothy McNulty,“Optical beam integration system” US patent 4733944
[22]Manabu Seo, Yasufumi Yamada, “Ultrashort-pulse laser-working method and apparatus and structural bodies produced by using the same” US patent 7072566 B2
[23]Ruey Jennifer Hwu, “Apparatus and method for concentrating beams from board area diode lasers, diode laser bars and/or diode laser arrays” US patent 6215598
[24]Jame J. Yang, Michael R. Wang, “Analysis and optimization on single-zone binary flat-top beam shaper” Opt. Eng. 42(11) 3106-3113 (November 2003)
[25]Nicolas Passilly, Michael Fromager, Laurence Mechin, Chantal Gunther, Sylvain Eimer, Tayeb Mohammed_brahim, Kamel Ait-Ameur, “1-D laser beam shaping using an adjustable binary diffractive optical element” Optics Communications 241 (2004) 465-473
[26]T. Kajava, A. Hakola, H. Elfstrom, J. Simonen, P. Paakkonene, J. Turunen, “Flat-top profile of an excimer-laser beam generated using beam-splitter gratings” Optics Communications 268 (2006) 289-293
[27]J. S. Liu, M. R. Taghizadeh, “Iterative algorithm for the design of diffractive phase elements for laser beam shaping” Optics Letters, Vol. 27 No.16 1463-1465 (2002)
[28]C. Dorrer, “High-damage-threshold beam shaping using binary phase plates” Optics Letters, Vol 34 No. 15 2330-2332 (2009)
[29]Michael R. Feldman, “Beam-Homogenizer” US patent 5610733
[30]Zeev Zalevsky, Yuval Kapellner, Izhar Eyal, Golan Manor, “Optical system and method for use in projection systems” US patent 2007/0273957 A1
[31]Fred M. Dickry, Scott C. Holswade, “Gaussian laser beam profile shaping” Opt. Eng. 35(11) 3285-3295 (November 1996)
[32]Thomas Dresel, Mathias Beyerlein, Johannes Schwider, “Design and fabrication of computer-generated beam-shaping holograms” Applied Optics, Vol. 35 No. 23 (1996)
[33]Thomas Dresel, Mathias Beyerlein, Johannes Schwider, “Design of computer-generated beam-shaping holograms by iterative finite-element mesh adaption” Applied Optics, Vol. 35 No.35 (1996)
[34]R. Grunwald, S. Woggon, R. Ehlert, W. Reinecke, “Thin-film microlens arrays with non-spherical elements” Pure Appl. Opt. 6 (1997) 663-671
[35]Tasso R. M. Sales, “Random microlens array for optical beam shaping and homogenization” US patent 6859326 B2
[36]Tasso R. N. Sales, “Structured microlens arrays for beam shaping” Opt. Eng. 42(11) 3084-3085 (November 2003)
[37]Frand Wippermann, Uwe-D. Zeitner, Peter Dannberg, Andreas Brauer, Stefan Sinzinger, “Beam homogenizers based on chirped microlens arrays” Optics Express, Vol. 15 No.10, (2007)
[38]Juan Liu, Ben-Yuan Gu, “Laser beam shaping with polarization-selective diffractive phase elements” Applied Optics, Vol. 39 No. 18 (2000)
[39]XinBing Liu, “Method for drilling circular holes with a laser beam” US patent 6362454 B1
[40]Chien-Chuan Chen, Po-Hung Yao, Po-Chou Chen, Cheng-Huan Chen, Fong-Zhi Chen, Wei-Yao Hsu, Chun-Chieh Chen, “Double side microlens array for pico projector” ICAM 2010
[41]Takahiro Uchida, Shin-ichi Nakayama, “Laser beam-splitting apparatus” US patent 5798867
[42]Leroy M. Wood, William R. Potter, “Light beam splitter” US patent 6782167 B2
[43]Ivan B. Steiner, “Beam multiplying component” US patent 5442787
[44]Paul C. Allen, Matthew J. Jolley, Robin L. Teitzel, Michael Rieger, Michael Bohan, Timothy Thomas, “Laser pattern generation apparatus” US patent 5386221
[45]Katsuaki Komatsu, Shinichi Nishi, “Image reading apparatus with a diffraction grating” US patent 5162943
[46]Keiji Kataoka, “Multi-beam generation element and optical printing apparatus therewith” US patent 5631762
[47]Donald C. O’Shea, “Reduction of the zero-order intensity in binary Dammann gratings” Applied Optics, Vol. 34 No. 28 (1995)
[48]Qiaofeng Tan, Tingbai Yan, Guofan Jin, Minxian Wu, “Diffractive optical array element for realizing uniform spot on the plane non-perpendicular to the optical axis with geometrical shape transform” Optics Communications 175 (2000) 13-18
[49]P. Ehbets, H. P. Herzig, D. Prongue, “High-efficiency continuous surface-relief grating for two-dimensional array generation” Optics Letters, Vol.17 No. 13 (1992)
[50]Shaoxia Li, Gang Yu, Caiyun Zheng, Qiaofeng Tan, “Quasi-Dammann grating with proportional intensity array spots” Optics Letters, Vol.33 No.18 (2008)
[51]Rick L. Morrison, “Diffraction grating apparatus and method of forming a surface relief pattern in diffraction grating apparatus” US patent 5113286
[52]M. Ghisoni, H. Martinsson, N. Eriksson, Ming Li, A. Larsson, J. Bengtsson, A Khan, G. Parry, “4x4 Fan-out generator using GaAs based VCSEL’s and diffractive optical element” IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 9No. 4 (1997)
[53]Antti Vasara, Mohammad R. Taghizadeh, Jari Turunen, Jan Westerholm, Eero Noponen, Hiroyuki Ichikawa, J. Michael Miller, Tommi Jaakkola, Sirpa Kuisma, “Binary surface-relief gratings for array illumination in digital optics” Applied Optics, Vol. 31 No. 17 3320-3336 (1992)
[54]Fung Jacky Wen, Po Sheun Chung, “Two-dimensional optical splitters with polymer optical fibre arrays” Journal of Optics A: Pure and Applied Optics 9 (2007) 723-727
[55]Nobuaki Furuya, Gen Oda, Kouki Ichihashi, “Multiple splti-beam laser processing apparatus generating an array of focused beams” US patent 5430816
[56]Keiji Iso, Takashi Kuwabara, “Laser beam machining apparatus using a plurality of galvanoscanners” US patent 6058132
[57]Curtis A. Shuman, “Optical beamsplitter” US patent 5657164
[58]Keiji Fuse, “Optical device for laser machining” US patent 5690845
[59]Hiroshi Taniura, “Optical beam splitter” US patent 4997261
[60]Bahaa E.A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, (John Wiley & Sons Inc.)
[61]J. W. Goodman, Introduction to Fourier optics (Roberts & Company, 2005), chap. 4.
[62]Drew A. Pommet, M. G. Moharam, Eric B. Grann, “Limits of scalar diffraction theory for diffractive phase elements” J. Opt. Soc. Am. A Vol. 11 No. 6 1827-1834 (1994)
[63]Victor A. Soifer, Method fer computer design of diffractive optical elements (Wiley, 2002), chap. 2.
[64]J. R. Fienup, “Phase retrieval algorithms: a comparison”, Applied Optics, Vol. 21, 2758-2769 (1982).
[65]F.Wyrowski and 0. Bryngdahl, “Iterative Fourier-transform algorithm applied to computer holography ”,J. Opt. Soc. Am. A 5, 1058-1065 (1988).
[66]R.W. Gerchberg and W.O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures” Optik 35(2), 237-246 (1972).
[67]John H. Mathews and Kurtis D. Fink, Numerical Methods Using MATLAB, fourth edition(Pearson Education, Inc)
[68]W.J. Dallas, “Phase Quantization-a Compact Derivation”, Vol.10 No.3, Applied Optics 1971.
[69]L.L. Doskolovich et al., “Direct 2D Calculation of Quantized DOEs on the Basis of a Continuous Series Approach”, Vol. 44 No.4, 685-698, Journal of Modern Optics (1997).
[70]http://www.poly-tech.com.tw/
[71]http://www.newport.com/
[72]http://www.lighttrans.com/
[73]http://www.mt-berlin.com/frames_home/shaper_descr.htm
(此全文未開放授權)
電子全文
摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *