帳號:guest(3.147.67.166)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):侯蘊芳
論文名稱(中文):鎳奈米線受磁場影響之熱傳導性質研究
論文名稱(外文):Thermal conductivity of Ni nanowires affected by magnetic field
指導教授(中文):賴梅鳳
口試委員(中文):衛榮漢
劉達人
賴梅鳳
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學號:9833594
出版年(民國):100
畢業學年度:99
語文別:中文
論文頁數:60
中文關鍵詞:鎳奈米線熱傳導係數磁壁靜磁場勞倫茲常數
相關次數:
  • 推薦推薦:0
  • 點閱點閱:26
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文量測鎳奈米線因自發熱所造成的電阻變化,利用穩態焦耳熱及電阻檢溫理論得到其熱傳導係數,實驗分成兩個部分探討鐵磁性材料鎳奈米線在不同磁壁密度與固定在不同外加靜磁場對溫度變化的熱傳導係數。
實驗一:量測鎳奈米線在不同磁壁密度於溫度變化60-300K的熱傳導係數,結果顯示熱傳導係數在較高的磁壁密度狀態較小,室溫下鎳奈米線的熱傳導係數約為鎳塊材的31%,勞倫茲常數明顯小於理論值2.44×10-8 WΩ/K2,顯示鎳奈米線不適用威德曼-法蘭茲定律(Wiedemann-Franz law)。實驗二:量測鎳奈米線固定在不同靜磁場下於溫度變化10-300K的熱傳導係數,結果顯示靜磁場會抑制磁振子和部分聲子的熱傳輸行為,靜磁場愈大造成熱傳導係數愈小,直到靜磁場大於510 Gauss熱傳導係數減小幅度趨於緩和,室溫下鎳奈米線的熱傳導係數約為鎳塊材的30%,勞倫茲常數也明顯小於理論值2.44×10-8 WΩ/K2,顯示鎳奈米線亦不適用威德曼-法蘭茲定律。
This work measures the resistance difference of Ni nanowire from self-heating by using steady-state joule heating and electrical-resistance thermometry. Finally, we obtain the thermal conductivity of Ni nanowire. The experiments divide into two parts of Ni nanowires in different domain wall density and in different magnetic field to investigate the relationship between temperature and thermal conductivity. First, we measure the thermal conductivity in different domain wall density at temperature between 60 and 300K. Results show that thermal conductivity in higher domain wall density is smaller than in lower one. The thermal conductivity of Ni nanowires is about 31% of bulk at 300K and Lorentz number is obviously less than theoretical value 2.44×10-8 WΩ/K2. Second, we measure the thermal conductivity fixed in different static magnetic field at temperature between 10 and 300K. Results show that magnon and part of phonon are suppressed heat conduction by field. The thermal conductivity in higher field is smaller and until the field higher than 510 Gauss thermal conductivity tends to constant. The thermal conductivity of Ni nanowires is about 30% of bulk at 300K and Lorentz number is obviously less than theoretical value 2.44×10-8 WΩ/K2. Results show Ni nanowires are not followed Wiedemann-Franz law.
Keywords:Ni nanowires, thermal conductivity, domain wall, magnetic field, and Lorenz number
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
符號表 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧--奈米線的熱傳導性質 2
1.2.1 單根多壁碳奈米管的熱傳導性質 2
1.2.2 半導體微奈米線的熱傳導性質 3
1.2.3 鐵磁材料奈米線的熱傳導性質 7
1.3 研究動機與目的 13
1.4 研究方法 13
第二章 理論基礎與文獻回顧 14
2.1 熱傳導係數 14
2.1.1 電子的熱傳導 15
2.1.2 聲子的熱傳導 18
2.1.3 磁振子的熱傳導 23
2.2 熱傳導係數的測量方法 26
2.2.1 自發熱與電阻檢溫量測方法 27
2.2.2 平行熱傳導量測法 28
2.2.3 三倍頻量測法 29
2.3 磁性材料 31
2.3.1 磁區 31
2.3.2 磁壁 32
2.3.3 磁壁幾何異向性 33
2.4 原子力顯微鏡技術 35
第三章 樣品製作與研究方法 36
3.1 懸空鎳奈米線結構製作 36
3.1.1 樣品製作流程 36
3.1.2 金電極陣列基板 37
3.2 鎳奈米線結構的磁力分佈 38
3.3 實驗量測系統與架構 38
3.3.1 低溫量測系統 39
3.3.2 熱傳導係數在不同磁壁密度與溫度的關係 40
3.3.3 熱傳導係數在不同外加靜磁場與溫度的關係 41
第四章 實驗結果與討論 42
4.1 懸空鎳奈米線結構 42
4.2 鎳奈米線磁力分布圖 43
4.3 鎳奈米線在不同磁壁密度與溫度的關係 45
4.3.1 電阻率在不同磁壁密度與溫度的關係 45
4.3.2 熱傳導係數在不同磁壁密度與溫度的關係 46
4.3.3 勞倫茲常數在不同磁壁密度與溫度的關係 48
4.4 鎳奈米線在施加不同靜磁場與溫度的關係 50
4.4.1 電阻溫度係數 51
4.4.2 熱傳導係數固定在不同靜磁場與溫度的關係 51
4.4.3 勞倫茲常數與溫度的關係 53
第五章 結論 56
參考文獻 57
[1]J. G. Zhu, Y. Zheng, and G. A. Prinz, “Ultrahigh density vertical magnetoresistive random access memory,” J. Appl. Phys., vol. 87, pp. 6668-6673, 2000.
[2]S. S. P. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall racetrack memory,” Science, vol. 320, pp. 190-194, 2008.
[3]M. N. Baibich, J. M. Broto, A. Fert, F. N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett., vol. 61, pp. 2472-2475, 1988.
[4]G. Binasch, P. Grunberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B, vol. 39, pp. 4828-4830, 1989.
[5]E. Pop, S. Sinha, and K. E. Goodson, “Heat Generation and Transport in Nanometer-Scale Transistors,” Proceedings of the IEEE, vol. 94, pp. 1587-1601, 2006.
[6]E. Pop, “Energy Dissipation and Transport in Nanoscale Devices,” Nano Res., vol. 3, pp. 147-169, 2010.
[7]S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: A spin-based electronics vision for the future,” Science, vol. 294, pp. 1488-1495, 2001.
[8]C. Chappert, A. Fert, and F. N. V. Dau, “The emergence of spin electronics in data storage,” Nat. Mater., vol. 6, pp. 813-823, 2007.
[9]I. Zutic, J. Fabian, and S. Das Sarma, “Spintronics: Fundamentals and applications,” Rev. Mod. Phys., vol. 76, pp. 323-410, 2004.
[10]谢华清, 奚同庚, “低維材料熱物理,” 上海科學技術學院出版社, 2008.
[11]P. Kim, L. Shi, A. Majumdar, and P. L. McEuen, “Thermal transport measurements of individual multiwalled nanotubes,” Phys. Rev. Lett., vol. 87, pp. 215502, 2001.
[12]C. J. Glassbrenner, and G. A. Slack, “thermal conductivity of silicon and germanium from 3 K to the melting point,” Phys. Rev. , vol. 134, pp. A1058–A1069, 1964.
[13]D. Li, Y. Wu, Philip Kim, Li Shi, Peidong Yang, and Arun Majumdar, “Thermal conductivity of individual silicon nanowires,” Appl. Phys. Lett., vol. 83, pp. 2934-2936 , 2003.
[14]W. Liu, and M. Asheghi, “Phonon-boundary scattering in ultrathin single-crystal silicon layers,” Appl. Phys. Lett., vol. 84, pp. 3819-3821, 2004.
[15]W. Liu, and M. Asheghi, “Thermal conduction in ultrathin pure and doped single-crystal silicon layers at high temperatures,” J. Appl. Phys., vol. 98, pp. 123523, 2005.
[16]Y. Yang, and M. Asheghi, “Temperature mapping of metal Interconnects using scanning thermoreflectance microscope,” 21st IEEE Semi-therm Symposium, 2005.
[17]M. Asheghi, K. Kurabayashi, R. Kasnavi, and K. E. Goodson, “Thermal conduction in doped single-crystal silicon films,” J. Appl. Phys., vol. 91, pp. 5079-5088, 2002.
[18]W. Liu, and M. Asheghi, “Thermal conductivity measurements of ultra-thin single crystal silicon layers,” ASME J. Heat Transfer., vol. 128, pp. 75-83, 2006.
[19]Y. Yang, R. M. White, and M. Asheghi, “Thermal characterization of Cu/CoFe multilayer for giant magnetoresistive head applications,” ASME J. Heat Transfer., vol. 28, pp. 113-120, 2006.
[20]W. B. Yelon, and L. Berger, “Magnon heat conduction and magnon-electron Scattering in Fe-Ni,” Phys. Rev. Lett., vol. 25, pp. 1207-1210, 1970.
[21]W. B. Yelon, and L. Berger, “Magnon heat conduction and magnon scattering processes in Fe-Ni Alloys,” Phys. Rev. B, vol. 6, pp. 1974-1985, 1972.
[22]M. N. Ou, T. J. Yang, S. R. Harutyunyan, Y. Y. Chen, C. D. Chen, and S. J. Lai, “Electrical and thermal transport in single nickel nanowire,” Appl. Phys. Lett., vol. 92, pp. 063101, 2008.
[23]B. L. Zink, A. D. Avery, R. Sultan, D. Bassett, and M. R. Pufall, “Exploring thermoelectric effect and Wiedemann-Franz violation in magnetic nanostructure via micromachined thermal platforms,” Solid Communications , vol. 150, pp. 514-518, 2010.
[24]R. Sultan, A. D. Avery, G. Stiehl, and B. L. Zink, “Thermal conductivity of micromachined low-stress silicon-nitride beams from 77 to 325 K,” J. Appl. Phys., vol. 105, pp. 043501, 2009.
[25]C. S. Lue, C. N. Kuo, D. S. Tasi, Y. K. Kuo, Zhangzhen He and Mitsuru Itoh, “Magnon-mediated thermal conductivity in the dimerized spin-gap compound BaCu2V2O8,” Phys. Rev. B, vol. 78, pp. 012406, 2008.
[26]C. Hess, C. Baumann, U. Ammerahl, B, Buchner, F. Heidrich-Meisner, W. Brening, and A. Revcolevschi, “Magnon heat transport in (Sr, Ca, La)14Cu24O41,” Phys. Rev. B, vol. 64, pp. 184305 , 2001.
[27]R. Berman, “Thermal Conduction in Solids,” Oxford, 1976.
[28]T. M. Tritt, “Thermal Conductivity: Theory, Properties, and Applications,” Kluwer, New York, 2004.
[29]N. W. Ashcroft, N. D. Mermin, “Solid state physics,” Holt, Rinehart and Winston, 1976.
[30]C. Kittel, “Introduction to Solid State Physics,” 8th ed. Wiley, 2005.
[31]P. Debye, “Some results of kinetic theory of isolators,” Physik. Z., vol. 13, pp. 97-100, 1912.
[32]G. Wiedemann and R. Franz, “The thermal conductivities of metals,” Ann. Phys., vol. 89, pp. 497-531, 1853.
[33]L. Lorenz, “The thermal and electrical conductivities of metals,” Ann. Phys., vol. 13, pp. 422-447, 1881.
[34]S. Chikazumi, C. D. Graham, “Physics of Ferromagnetism,” Oxford University Press, 1997.
[35]Douthett and S. A. Friedberg, “Thermal Conductivity of MgO, Al2O3, MgAl2O4, and Fe3O4 Crystals from 3° to 300°K,” Physical Review, vol. 126, pp. 427-441, 1962.
[36]Y. C. Tai, C. H. Mastrangelo, and R. S. Muller, “Thermal conductivity of heavily doped low-pressure chemical vapor deposited polycrystalline silicon films,” J. Appl. Phys., vol. 63, pp. 1442-1447, 1988.
[37]B. M. Zawilski, R. T. Littleton, and T. M. Tritt, “Description of the parallel thermal conductance technique for the measurement of the thermal conductivity of small diameter samples,” Review of Scientific Instruments, vol. 72, pp. 1770-1774, 2001.
[38]D. G. Cahill, “Thermal conductivity measurement from 30 to 750 K: The 3 omega method,” Review of Scientific Instruments, vol. 61, pp. 802-808, 1990.
[39]D. G. Cahill, and R. O. Phol, “Thermal conductivity of amorphous solids above the plateau,” Phys. Rev. B, vol. 35, pp. 4067-4073, 1987.
[40]L. Lu, W. Yi, and D. L. Zhang, “3 omega method for specific heat and thermal conductivity measurements,” Review of Scientific Instruments, vol. 72, pp. 2996-3003, 2001.
[41]嚴密, 彭曉領, “磁學基礎與磁性材料,” 浙江大學出版社, 2006.
[42]A. Hubert and R. Schäfer, “Magnetic domains: the analysis of magnetic microstructures,” Springer, Berlin, 1998.
[43]T. Taniyama, I. Nakatani, T. Namikawa, and Y. Yamazaki, “Resistivity due to domain walls in Co zigzag wires,” Phys. Rev. Lett., vol. 82, pp. 2780-2783, 1999.
[44]U. Rüdiger, J. Yu, A. D. Kent, and S. S. P. Parkin, “Magnetoresistance due to domain walls in an epitaxial microfabricated Fe wire,” Appl. Phys. Lett., vol. 73, pp. 1298-1300, 1998.
[45]G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, “Surface studies by scanning tunneling microscopy,” Phys. Rev. Lett., vol. 49, pp. 57-61, 1982.
[46]G. Binnig, C.F. Quate, and C. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett., vol. 56, pp. 930-933, 1986.
[47]童資芸, “磁性奈米線之熱傳性質研究,” 碩士論文, 2010.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *