帳號:guest(3.145.184.117)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林宜婕
作者(外文):Lin, Gloria
論文名稱(中文):以三維足型尺寸建立足弓型態分類與應用
指導教授(中文):王茂駿
口試委員(中文):石裕川
林志隆
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學號:9834552
出版年(民國):100
畢業學年度:99
語文別:中文
論文頁數:99
中文關鍵詞:足弓足弓墊鞋墊足型尺寸足弓分類群集分析
外文關鍵詞:foot archarch supportinsolefoot dimensionarch type classificationclustering analysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:184
  • 評分評分:*****
  • 下載下載:28
  • 收藏收藏:0
本研究利用三維足型掃描取得300 位(男女各半)成人的足型資料,量測14項足型尺寸,並擷取足弓定義之11項特徵參數,對於國人足弓型態的差異,分別提出男性和女性之足弓分類方法,應用於合腳型鞋墊的設計。
先以主成分分析法找出影響足弓型態的重要特徵參數,由群集分析以重要參數分別將國人的足弓型態分為男性和女性的多種類型,並對各足弓類型的樣本,分析其足部的長度、寬度、圍度、高度尺寸特徵,了解國人的足弓型態差異。在人體計測方面,發現體重和BMI較低的人有較寬的足弓。在足部計測方面,各足弓類型在足部長度和高度尺寸上有顯著差異,長度尺寸較大可能有較窄和較低的足弓。再者,由於各足弓類型在足部寬度和圍度尺寸上無顯著差異,故新的三維足弓分類方法可以確實區分足弓類型,判斷時較不會受到足型的肥胖所影響。
在應用方面,本研究提出合腳型鞋墊的新設計,於男性足長在240 mm至290 mm以及女性足長在210 mm至260 mm範圍內,以美規鞋碼為基準,分別對各種足弓類型給予對應的足弓特徵尺寸,建立足弓區規格系統,並以電腦輔助設計軟體建立模型,作為鞋墊設計的參考。此外,提出男性和女性足弓類型的尺寸分界,對於顧客提供一套容易了解自身足弓類型並選擇鞋墊的方法。
最後,藉由男性和女性各50 位的新樣本重複量測驗證,確認本研究提出之足弓分類方法能夠代表台灣年輕學生族群樣本之足弓型態。
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3研究目的 4
第二章 文獻探討 5
2.1足部與足弓構造 5
2.1.1足部構造 5
2.1.2足弓構造 7
2.1.3 足弓的功能 8
2.2足弓量測與足弓分類方法 8
2.2.1以尺規直接測量足部尺寸 8
2.2.2足印參數量測方法 10
2.2.3 X光與超聲波檢查測量 13
2.2.4光學儀器量測法 14
2.2.5足弓量測之綜合比較 16
2.3因素分析和資料挖礦方法 18
2.3.1主成分分析 18
2.3.2群集分析方法 19
2.3.3資料挖礦方法於足部計測之運用 20
2.4文獻小結 22
第三章 研究方法 23
3.1 受測者資料 23
3.2 儀器與設備 24
3.3定義參數項目 25
3.3.1 三維足型掃描計測之足部尺寸 25
3.3.2 足弓特徵尺寸定義 26
3.4測量方法步驟 28
3.4.1 測量前準備階段 29
3.4.2 測量進行階段 30
3.4.3 數據整理階段 30
3.5足弓特徵分析流程 31
3.6統計分析方法 34
第四章 研究結果 35
4.1足型尺寸及足弓特徵資料整理 35
4.1.1國人足型尺寸之性別差異結果 35
4.1.2國人足弓特徵之性別差異結果 36
4.2足弓型態分類 38
4.2.1主成分分析及主要維度定義 38
4.2.2決定分群數目 40
4.2.3足弓型態的代表型與語意描述 42
4.3足弓區規格系統與提供給顧客之方法 46
4.3.1建立足弓區規格系統 46
4.3.2消費者足弓類型判斷 53
4.4鞋墊製造與銷售流程 56
第五章 討論 58
5.1足弓類型在體型和足型的差異 58
5.1.1足弓類型在體型的差異 58
5.1.2足弓類型在足型的差異 59
5.1.3三種足弓類型的特徵整理 68
5.2足弓類型在文獻資料中的比較 69
5.2.1 足弓特徵尺寸量測值比較 69
5.2.2 足弓形狀尺碼系統的比較 72
5.3足弓分類方法的重複量測比較與驗證 74
5.3.1依足弓判斷標準區分足弓型態 74
5.3.2驗證樣本的分群結果 77
第六章 結論與建議 81
6.1結論 81
6.2建議 82
參考文獻 83
1. 林清山,(1990),多變量統計分析法,台北:東華書局。
2. 于葆、王正賢、馮紹禎、冉德洲、喬伋、沈步乙、沈時義、陳惠昌、陳耀福、高言誠、黃登惠、譚碧華,(1990),運動醫學,台北:中國文化大學出版。
3. 鄭豐聰,(1998),腳型尺碼資訊系統與鞋楦設計關係之研究,國立交通大學博士論文。
4. 林承哲,(2002),以三度空間腳型量測儀建立腳型尺碼分類系統,國立清華大學碩士論文。
5. 麥麗敏(譯),(2002),Snell臨床解剖學(Snell, R., 1997),台北市:合記圖書出版社。
6. 林麗芬、黃雅貞、黃心怡、陳書芸,(2004),足部拇趾外翻測量方法之比較分析,運動生物力學研究彙刊。
7. 蔣志傑,(2005),足弓型態判別在選購運動鞋之運用,鞋技專刊。
8. 何青鄅,(2006),影響消費者選購名牌服飾之因素分析,中華大學碩士論文。
9. 李毅帆,(2008),應用資料挖礦方法建立兒童足型鞋碼系統,國立清華大學碩士論文。
10. 洪曉玲,(2008),足弓墊對改進國際標準舞者扁平足之平衡及足部疲勞之研究,大同大學碩士論文。
11. 黃台生,(2008),3D量測在鞋款設計之應用,設計學報,13(1),頁71-90。
12. 盧俊銘,(2009),利用三度空間掃描資料擷取人體尺寸與體型,國立清華大學博士論文。
13. 吳誌軒,(2010),老年人步行策略與下肢能量流動的型態,國立台灣大學碩士論文。
14. 趙文瑀,(2010),以足部三維形狀特徵參數建立足型分類尺碼系統,國立清華大學碩士論文。
15. Anderberg, M. R. (1973). Cluster Analysis for Applications. NY: Academic Press.
16. Berry, M. J. A. and Linoff, G. (1997). Data Mining Techniques: for Marking, Sales, and Customer Support, NY: John Wiley & Sons Inc.
17. Bookstein, F.L. (1991). Morphometric tools for landmark data. NY: Cambridge University Press.
18. Bus, S., Ulbrecht, J., and Cavanagh, P. (2004). Pressure relief and load redistribution by custom-made insoles in diabetic patients with neuropathy and foot deformity. Clinical Biomechanics, 19(6), pp. 629-638.
19. Cabena, P., Stadler, R. and Zanasi, A. (1998). Discovering Data Mining: From Concept to Implementation. Upper Saddle River, NJ: Prentice-Hall PTR.
20. Cavanagh, P. and Rodgers, M. (1987). The arch index: a useful measure from footprints. Journal of Biomechanics, 20(5), pp. 547-551.
21. Chen, W., Ju, C. and Tang, F. (2003). Effects of total contact insoles on the plantar stress redistribution: a finite element analysis. Clinical Biomechanics, 18(6), pp. 17-24.
22. Cheung, J. and Zhang, M. (2008). Parametric design of pressure-relieving foot orthosis using statistics-based finite element method. Medical Engineering and Physics, 30(3), pp. 269-277.
23. Chiu, M. C. and Wang, M. J. (2007). Professional footwear evaluation for clinical nurses. Applied Ergonomics, 38(2), pp. 133-141.
24. Chu, W. C., Lee, S. H., Chu, W., Wang, T. J. and Lee, M. C. (1995). The use of arch index to characterize arch height: a digital image processing approach. IEEE Trans Biomed Eng, 42(11), pp. 1088-1093.
25. Clarke, H.H. (1933).An objective method of measuring the height of the longitudinal arch in foot examination. Res Q, 4, pp. 99-107.
26. Cobey, J.C. and Sella, E. (1981). Standardizing methods of measurement of foot shape by including the effects of subtalar rotation. Foot & Ankle, 2(1), pp. 30-36.
27. Encyclopedia Britannica Online. (2007). http://www.britannica.com/EBchecked/topic/212788/foot
28. Gardner Jr, L., Dziados, J., Jones, B., Brundage, J., Harris, J.and Sullivan, R. (1988). Prevention of lower extremity stress fractures: a controlled trial of a shock absorbent insole. American Journal of Public Health, 78(12), pp. 1563-1567.
29. Gilmour, J.C. and Burns, Y. (2001). The measurement of the medial longitudinal arch in children. Foot& Ankle Int, 22(6), pp. 493-498.
30. Godil, A. and Ressler, S. (2006). Retrieval and Clustering from a 3D Human Database Based on Body and Head Shape. In Proc. of SAE Digital Human Modeling Conference.
31. Harris, R.I. and Beath, T. (1947). Army foot survey: an investigation of foot ailments in Canadian soldiers. Ottawa: National Research Council of Canada.
32. Hawes, M.R., Nachbauer, W., Sovak. D., and Nigg, B.M. (1992). Footprint parameters as a measure of arch height. Foot & Ankle, 13(1), pp. 22-26.
33. Henning, E. M. and Cavanagh, P.R.(1985). Ultrasonic quantification of the arch of the weight-bearing foot. In Biomechanics IX-B, Winter, Champaign, IL, Human Kinetics Publisher, pp. 211-216.
34. Irwin, L.W. (1937). A study of the tendency of school children to develop flat-footedness. Res Q, 8, pp. 46-53.
35. ISO 7250. (1996). Basic human body dimensions for technological design.
36. Kaiser, H.F. (1960).The application of electronic computers to factor analysis. Educational & Psychological Measurement, 20, pp. 141-151.
37. Kanatli, U., Yetkin, H., and Bolukbasi, S. (2003). Evaluation of the transverse metatarsal arch of the foot with gait analysis. Archives of Orthopaedic and Trauma Surgery, 123(4), pp. 148-150.
38. Kaufman, L. and Rousseeuw, P. (1990). Finding Groups in Data. An Introduction to Cluster Analysis. NY: Wiley.
39. Killian, R. B., Nishimoto, G. S., and Page, J. C. (1998). Foot and ankle injuries related to rock climbing. The role of footwear. JAM Podiart Med Assoc, 88(8), pp. 365-374.
40. Kogler, G. F., Solomonidis, S., and Paul, J. (1996). Biomechanics of longitudinal arch support mechanisms in foot orthoses and their effect on plantar aponeurosis strain. Clinical Biomechanics, 11(5), pp. 243-252.
41. Kouchi, M. and Mochimaru, M. (2001). Development of a low cost foot-scanner for a custom shoe making system. In 5th ISB Footwear Biomechanics, pp. 58-59.
42. Kouchi, M. and Tsutsumi, E. (1996), Relation between the medial axis of the foot outline and 3D foot shape. Ergonomics, 39(6), pp. 853-861.
43. Kouchi, M., Miyata, N., and Mochimaru, M. (2005). An Analysis of hand measurements for obtaining representative japanese hand models. In Proc. of SAE Digital Human Modeling for Design and Engineering Conference.
44. Lee, Y. C., Lin, G., and Wang, M. J. (2010). Evaluating Gender Differences in Foot Dimensions. The 9th Pan-Pacific Conference on Ergonomics.
45. Lee, Y. H. and Hong, W. H. (2005). Effects of shoe inserts and heel height on foot pressure, impact force, and perceived comfort during walking. Applied Ergonomics, 36(3), pp. 355-362.
46. Liu, X., Kim, W., and Drerup, B. (2004). 3D characterization and localization of anatomical landmarks of the foot by FastSCAN. Real-time Imaging, 10(4), pp. 217-228.
47. Luximon, A., Goonetilleke, R.S., and Tsui, K.L. (2003). Foot landmarking for footwear customization. Ergonomics, 46(4), pp. 364-383.
48. Luximon, A., Goonetilleke, R.S., and Zhang, M. (2005). 3D foot shape generation from 2D information. Ergonomics, 48(6), pp. 625-641.
49. Mathieson, I.,Upton, D., and Birchenough, A. (1999). Comparison of footprint parameters calculated from static and dynamic footprints. The Foot, 9(3), pp. 145-149.
50. McCrory, J. L., Young, M. J., Boulton, A. J. M., and Cavanagh, P. R. (1997). Arch index as a predictor of arch height. The Foot, 7(2), pp. 79-81.
51. McLain, T. M. (2010). The Use of Factor Analysis in the Development of Hand Sizes for Glove Design. Dissertations and Student Research, University of Nebraska at Lincoln.
52. Mochimaru, M. and Kouchi, M. (1997). Automatic calculation of the medial axis of foot outline and its flexion angles. Ergonomics, 40(4), pp. 450-464.
53. Mochimaru, M.,Kouchi, M.,and Dohi, M. (2000). Analysis of 3-D human foot forms using the Free Form Deformation method and its application in grading shoe lasts. Ergonomics, 43(9), pp. 1301-1313.
54. Nunnally, J.C. and Bernstein, I.H. (1994). Psychometric theory. NY: McGraw-Hill.
55. Rao, U.B. and Joseph, B. (1992). The influence of footwear on the prevalence of flat foot: a survey of 2300 children. J Bone, Joint Surg Br, 74(4), pp. 525-527.
56. Razeghi, M. and Batt, M. (2002). Foot type classification: a critical review of current methods. Gait & Posture, 15(3), pp. 282-291.
57. Rose, G.K., Welton, E.A., and Marshall, T. (1985). The diagnosis of flat foot in the child, J Bone, Joint Surg Br, 67(1), pp. 71-78.
58. Shiang, T.Y., Lee, S.H., Lee, S.J., and Chu, W.C.(1998). Evaluating different footprint parameters as a predictor of arch height. IEEE Eng Med Biol Mag., 17(6), pp. 62-66.
59. Simkin, A., Leichter, I., Giladi, M., Michael, S., and Milgrom, C. (1989). Combined effect of foot arch structure and orthotic device. Foot & Ankle, 10(1), pp. 25-29.
60. Stavlas, P., Grivas, T.B., Michas, C., Vasiliadis, E.,and Polyzois, V. (2005). The evolution of foot morphology in children between 6 and 17 years of age: a cross-sectional study based on footprints in a Mediterranean population. J Foot Ankle Surg, 44(6), pp. 424-428.
61. Urry, S.R. and Wearing, S.C. (2001). A Comparison of Footprint Indexes Calculated From Ink and Electronic Footprints. J Am Podiatr Med Assoc, 91(4), pp. 203-209.
62. Wang, T.L. and Comberiati, R.F. (1999). The navicular arch index :a reliable and valid footprint parameter to evaluate arch height. J Rehabil Med Assoc ROC, 27 (4), pp. 183-188.
63. Wearing, S. C., Hills, A. P., Byrne, N. M., Hennig, E. M.,and McDonald, M. (2004). The arch index: a measure of flat or fat feet? Foot & Ankle Int, 25(8), pp. 575-581.
64. Williams Iii, D., McClay, I. and Hamill, J. (2001). Arch structure and injury patterns in runners. Clinical Biomechanics, 16(4), pp. 341-347.
65. Williams, D.S. and McClay, I.S. (2000).Measurements used to characterize the foot and the medial longitudinal arch: reliability and validity. Phys Ther, 80(9), pp. 864-871.
66. Witana, C.P., Goonetilleke, R.S., Au, E.Y., Xiong, S., and Lu, X. (2009). Footbed shapes for enhanced footwear comfort. Ergonomics, 52(5), pp. 617-628.
67. Witana, C.P., Goonetilleke, R.S., Xiong. S. and Au, E.Y. (2009). Effects of surface characteristics on the plantar shape of feet and subjects’ perceived sensations. Applied Ergonomics, 40(2), pp. 267-279.
68. Xiong, S., Goonetilleke, R. S., Witana, C.P., Weerasinghe, T.W., and Au E.Y. (2010). Arch Characterization: A Review, a New Metric, and a Comparison. J Am Podiatr Med Assoc, 100(1), pp. 14-24.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *