帳號:guest(3.19.76.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):梁曉堯
作者(外文):Liang, Hsiao-Yao
論文名稱(中文):矽積體光學晶片應用於光收發雙向多工器模組
論文名稱(外文):Silicon integrated photonics for bi-directional optical transceiver module multiplexer
指導教授(中文):李明昌
指導教授(外文):Lee, Ming-Chang
口試委員(中文):劉容生
徐世祥
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:9866503
出版年(民國):100
畢業學年度:100
語文別:中文
論文頁數:114
中文關鍵詞:光雙向多工器光收發
相關次數:
  • 推薦推薦:0
  • 點閱點閱:251
  • 評分評分:*****
  • 下載下載:25
  • 收藏收藏:0
在市面上,常見的光收發雙向多工器模組,都是利用沉積二氧化矽後再製作成通道波導(channel waveguide)。最後在安裝WDM分光蕊片在蝕刻出來的溝槽中;但隨著想要降低成本並使製程更加簡單,因此如何利用不同的設計亦能達到分光效果便成了件迫切的事情。
本論文為了提供未來光纖雙訊號(或多訊號)傳輸之需求,而利用矽積體光學設計低損耗之光波導和雙向分光器並結合成傳收模組。主要模組元件為漸變式錐形耦合器、脊形波導和多模干涉耦合器,輸出訊號為1310nm的雷射光,接收訊號為多模干涉耦合器另一端的1490nm遠端訊號,所以需利用多模干涉耦合器的鏡像耦合長度特性來分開1310nm和1490nm波段。並用BPM、Fimmwave等光學模擬軟體分別找出基模傳輸、Power loss最小、入射offset tolerance 最大的元件結構。
整個晶片使用FimmWave、BPM、FDTD模擬出上述各個模組元件的最佳尺寸及參數,並使用半導體製程的方式製作晶片,最後再做電性及光學檢測。最後的模組其反應速度可達到10kHz,兩個波長訊號的分光比分別為6:4(1310nm)及9:1(1490nm),介入損耗大約14dB。
Nowadays, two-way multiplexing optical transceiver modules are key components for passive optical network (PON) and optical interconnect. However, most of the devices are made by packaging active components such as diode laser, photodiodes, TIA and bulk optics like microlenses and WDM filters. A lot of package work and cost of individual components limit the price of each module and the operational speed.
The thesis focuses on developing a two-way dual-plexing transceiver module by using silicon integrated photonics. The main components include taper couplers、 rib waveguide, multi-mode interferometer (MMI), lateral and vertical mirrors, bonded with DFB lasers and photodiodes. The sending optical signal is 1310 nm and the receiving signal is 1490 nm. Firstly, we design a 2-by-2MMI to effectively separate the two wavelengths with a wide transmission bandwidth by using optical simulation software such as BPM and Fimmwave. We also analyze the polarization dependency and temperature sensitivity. Next we design the taper coupler as well as lateral and vertical mirror and estimate the insertion loss.
The device was fabricated in NDL. After the device was fabricated, we bonded laser diodes and photodiodes on the silicon module and measured the electronic and optics performance. The splitting ratio of two wavelengths was 6:4 (1310nm) and 9:1 (1490nm). The measured insertion loss is about 14dB. AC-modulated signals were sent into the device, showing that the device can work properly.
摘要 I
Abstract II
致謝 IV
第一章 緒論 1
1.1前言 1
1.2研究動機 4
1.3 論文架構 5
第二章 理論背景 1
2.1 波導理論及分析 1
2.1.1 光波導的結構與種類【7】【8】 1
2.1.2 波導傳輸條件【9】 2
2.1.3 平面波導傳輸模態【10】 6
2.2光束傳播法之原理簡介【11】【12】【13】【14】【15】 11
2.3 多模干涉耦合器原理(Multimode interference coupler) 【16】 13
2.3.1 自身成像原理(Self-image princple) 14
2.3.2 多模干涉耦合器分析 14
2.3.3 一般干涉(General interference) 18
2.3.4 限制干涉(Restricted interference) 20
2.3.5 雙向多工多模干涉耦合器設計【17】 21
第三章 元件設計與模擬 23
3.1 前言 23
3.2 漸變式錐形波導設計(inverted taper) 24
3.3 多模干涉耦合器(Multimode interference coupler) 【17】 29
3.3 多模干涉耦合器的溫度相關性【21】 35
3.4 水平方向轉折反射鏡(lateral turning mirror) 37
3.5 垂直方向54.7°角轉折反射鏡(vertical 54.7° turning mirror) 39
第四章 製作流程 44
4.1 製作流程圖 44
4.2 元件製作流成詳細說明 54
第五章 元件量測與分析 71
5.1實驗架構與量測方法 71
5.1.1光波導架構與量測方法 71
5.1.2光波導與光電訊號架構與量測方法 72
5.2實驗數據與結果 77
第六章 結論與未來展望 101
6.1 結論 101
6.2 實際元件特性 102
6.3 改進與未來期望 103
參考文獻 112
【1】錢顯毅、張立臣,光纖通信,東南大學出版社(2008).
【2】Hiromi NAKANISHI,Takeshi OKADA,Youichiro YAMAGUCHI,Kenji HIRAYAMA,Yasuhiro IGUCHI,Akira YAMAGUCHI,Naoyuki YAMABAYASHI and Yoshiki KUHARA, “Development of Bidirectional 1.3/1.55-um Optical Transceiver .Module Compliant with Ethernet Standard”
【3】A Bidirectional Single Fiber 1.25 Gb/s Optical Transceiver Module with SFP Package using PLC, T. Haslumoto, A. Kanda, R. Kasalnml, I .Ogawa,Y. Shuto. M. Yanagisawa, A. Ohki, S. Mino: M. Islui: Y. Suzuki; R. Nagasc. and T. Kitagawa NTT Photonics Laboratories, Nippon Tclcgmph and Telephone Colporation 3-1 Morinosato,Wakamiya,Atsugi-Slu, Kanagawa-Ken, 243-0198 Japan
【4】Fabrication of a TFF-Attached WDM-Type Triplex Transceiver Module Using Silica PLC Hybrid Integration Technology,Young-Tak Han, Yoon-Jung Park, Sang-Ho Park, Jang-Uk Shin, Chul-Wook Lee, Hyunsung Ko, Yongsoon Baek,Chul-Hee Park, Yoon-Koo Kwon, Wol-Yon Hwang, Kwang-Ryong Oh, and Heekyung Sung
【5】Thermal Characteristics of a Laser Diode Integrated on a Silica-Terraced PLC Platform; Duk-Jun Kim, Young-Tak Han, Yoon-Jung Park, Sang-Ho Park, Jang-Uk Shin, and Hee-Kyung Sung
【6】A PLC-Based Optical Sub-assembly of Triplexer Using TFF-Attached WDM and PD Carriers; Young-Tak Han, Yoon-Jung Park, Sang-Ho Park, Jang-Uk Shin, Duk-Jun Kim, Chul-Hee Park, Sung-Woong Park, Yoon-Koo Kwon, Deug-Ju Lee, Wol-Yon Hwang, and Hee-Kyung Sung
【7】Bahram Jalali, Mario Paniccia, and Graham Reed, "Silicon photonics," IEEE microwave magazine, 7(3):58-68, 2006.
【8】湯富福, Y-型光功率分配器之設計與模擬, 國立雲林科技大學 電子工程研究所(2004)..
【9】Jalali, B. and S. Fathpour, "Silicon photonics", Journal of Lightwave Technology, 24(12): 4600-4615, 2006.
【10】陳意智, 矽光波導元件光損耗研究, 國立中央大學 光電科學研究所(2005)
【11】M. D. Feit and J. A. Fleck, Jr., “Light propagation in graded-index fiber,” Appl. Opt. 17,3990, (Dec1978).
【12】Y. Chung, and N. Dagli, “Assesssment of finite difference beam propagation method,” IEEE J. Quantum Electron., Vol.QE-26, pp. 1335-1339, (1990).
【13】A. Splett, M. Majd, and K. Petermann, “A novel beampropagation method for large refractive index steps and largepropagation distance,” IEEE Photon. Technol. Lett., Vol. 3, pp. 466-468, (1991).
【14】D. Yevick, and B. Hermansson, “Efficient beam propagation techniques,” IEEE J. Quantum Electron., Vol. QE-26, pp.109-112, (1990).
【15】Rsoft Design Group, BeamPROP user menu, Chapter 1, pp. 4-21.
【16】Lucas B. Soldano and Erik C. M. Pennings, Member, “Optical Multi-Mode Interference Devices Based on Self-Imaging : Principles and Applications”, Journal of Lightwave Technology, vol. 13, pp. 615-627, Apr 1995.
【17】Design of an ultracompact MMI wavelength demultiplexer in slot waveguide structures, Jinbiao Xiao * , Xu Liu, and Xiaohan Sun ;Lab of Photonics and Optical Communications,Electronic Engineering Department,Southeast University, Nanjing 210096, China
【18】Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SO2, Richard A. Soref, Joachim Schmidtchen, and Klaus Petermann
【19】Low Loss Single-Mode Optical Waveguides with Large Cross-Section in Standard Epitaxial Silicon, A. Splett, Member, IEEE, and K. Petermann, Senior Member, IEEE
【20】The Single-Mode Condition for Semiconductor Rib Waveguides with Large Cross Section, Souren P. Pogossian, Lili Vescan, and Adrian Vonsovici
【21】Refractive indexes and temperature coefficients of germanium and silicon, H. W. Icenogle, Ben C. Platt, and William L. Wolfe
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *