帳號:guest(18.190.219.49)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):葉雅玲
作者(外文):Ye, Ya-Ling
論文名稱(中文):Study of Candida albicans Hap43 and CCAAT-binding complex in iron homeostasis
論文名稱(外文):白色念珠菌Hap43及CCAAT-結合複合物參與鐵平衡之研究
指導教授(中文):藍忠昱
指導教授(外文):Lan, Chung-Yu
口試委員(中文):高茂傑
楊程堯
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:9880537
出版年(民國):100
畢業學年度:100
語文別:英文
論文頁數:109
中文關鍵詞:白色念珠菌
相關次數:
  • 推薦推薦:0
  • 點閱點閱:107
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Candida albicans is an opportunistic pathogen, which is a part of normal flora (commensal) in healthy individuals and can become invasive in immunocompromised patients with a 44% mortality rate. Iron is a significant cofactor for many enzymes that are essential for cellular functions both in human and C. albicans. Iron uptake during infection is thus considered as a virulence contributor to this fungus. In the previous study, we found that C. albicans Hap43 is essential for its growth under the low-iron condition which mimics the environment within the host. Deletion of HAP43 also attenuates the virulence of C. albicans in a mouse model of infection. In this study, we further characterized the functional domains of Hap43 to understand the molecular mechanism of iron-responsive gene regulation by Hap43. In silico domain prediction and sequence alignment of Hap43 showed that Hap43 contains a CCAAT-binding complex (CBC) binding domain (CBD), a bZIP domain, a NES peptide, a NLS peptide, and three cysteine-rich domains. The putative CBD and bZIP domains are both demonstrated to be essential for Hap43 normal function. We also proved that Hap43 possesses a C-terminal repression domain critical for gene repression in response to iron limitation. In addition, we displayed that the activity of the repression domain is regulated by a regulatory domain (RD) which is located between the two cysteine-rich domains. Furthermore, we provided the evidences that Hap43 cooperates with CBC to repress the gene expression and mediate the flavinogenesis under the low-iron condition. Together, CBC has general biological functions, while Hap43 functions mainly in the iron-limited condition.
中文摘要 I
Abstract II
致謝辭 III
Table of Contents IV
List of Tables VI
List of Figures VII
List of Supplemental Figures VIII

1. Introduction 1
1.1 Candida albicans: an important pathogen 1
1.2 The importance of the essential iron and microbial pathogen 2
1.3 The regulation of iron homeostasis in Saccharomyces cerevisiae 4
1.4 The iron uptake systems in C. albicans 6
1.5 The CCAAT-binding complex in fungi 7
1.6 The CCAAT-binding complex and Hap43 in C. albicans 10
2. Materials and methods 12
2.1 Yeast strains and growth conditions 12
2.2 Isolation of yeast genomic DNA 13
2.3 Yeast transformation 13
2.4 Candida one-hybrid assay 14
2.5 Gene disruption 17
2.6 Southern blot analysis 18
2.7 Generation of HAP43 truncated mutants 19
2.8 Growth-dependent spot assay 20
2.9 RNA isolation 20
2.10 Reverse transcription PCR (RT-PCR) and quantitative real-time PCR (q-PCR) 21
2.11 Flavin secretion assay 22
2.12 Candida two-hybrid assay 22
3. Results 25
3.1 C. albicans Hap43 contains multiple domains which are potentially involved in its activity 25
3.2 The region from CR3 to C-terminus of Hap43 possesses the repressive activity and is essential for C. albicans growth under the low-iron condition 27
3.3 The highly conserved Hap43 C-terminal region consisting of 67 amino acids is critical for C. albicans growth under the low-iron condition 29
3.4 The region between CR1 and CR2 participates in the iron-responsiveness and regulation of the repression activity of Hap43 30
3.5 The bZIP domain of Hap43 is essential for the growth of C. albicans under the iron-deprived condition 31
3.6 The CBC binding domain of Hap43 is essential for the growth of C. albicans under the iron-deprived condition. 32
3.7 Deleting either one component of the CBC impedes the growth of C. albicans under the iron-deprived condition 33
3.8 C. albicans CBC is essential for the repression of genes encoding iron-utilization proteins under the iron-deprived condition 33
3.9 C. albicans CBC is required for flavinogenesis in response to iron starvation 34
3.10 The CBC components interact with each other in vivo independently of iron level 35
3.11 C. albicans CBC potentially has both Hap43-dependent and -independent functions 36
4. Discussion 38
5. References 43
Aisen, P., Leibman, A., and Zweier, J. (1978). Stoichiometric and site characteristics of the binding of iron to human transferrin. J Biol Chem 253, 1930-1937.
Akins, R.A. (2005). An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43, 285-318.
Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2005). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195-201.
Askwith, C., Eide, D., Van Ho, A., Bernard, P.S., Li, L., Davis-Kaplan, S., Sipe, D.M., and Kaplan, J. (1994). The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76, 403-410.
Baek, Y.U., Li, M., and Davis, D.A. (2008). Candida albicans Ferric Reductases Are Differentially Regulated in Response to Distinct Forms of Iron Limitation by the Rim101 and CBF Transcription Factors. Eukaryotic Cell 7, 1168-1179.
Barluzzi, R., Saleppico, S., Nocentini, A., Boelaert, J.R., Neglia, R., Bistoni, F., and Blasi, E. (2002). Iron overload exacerbates experimental meningoencephalitis by Cryptococcus neoformans. J Neuroimmunol 132, 140-146.
Bergh, K.T., Litzka, O., and Brakhage, A.A. (1996). Identification of a major cis-acting DNA element controlling the bidirectionally transcribed penicillin biosynthesis genes acvA (pcbAB) and ipnA (pcbC) of Aspergillus nidulans. J Bacteriol 178, 3908-3916.
Brakhage, A.A., Andrianopoulos, A., Kato, M., Steidl, S., Davis, M.A., Tsukagoshi, N., and Hynes, M.J. (1999). HAP-Like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. Fungal Genet Biol 27, 243-252.
Bucher, P. (1990). Weight matrix descriptions of four eukaryotic RNA polymerase II promoter elements derived from 502 unrelated promoter sequences. J Mol Biol 212, 563-578.
Bullen, J.J., Rogers, H.J., Spalding, P.B., and Ward, C.G. (2005). Iron and infection: the heart of the matter. FEMS Immunol Med Microbiol 43, 325-330.
Buschlen, S., Amillet, J.M., Guiard, B., Fournier, A., Marcireau, C., and Bolotin-Fukuhara, M. (2003). The S. cerevisiae HAP complex, a key regulator of mitochondrial function, coordinates nuclear and mitochondrial gene expression. Comparative and Functional Genomics 4, 37-46.
Chaffin, W.L., Lopez-Ribot, J.L., Casanova, M., Gozalbo, D., and Martinez, J.P. (1998). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Mol Biol Rev 62, 130-180.
Chen, C., Pande, K., French, Sarah D., Tuch, Brian B., and Noble, Suzanne M. (2011). An Iron Homeostasis Regulatory Circuit with Reciprocal Roles in Candida albicans Commensalism and Pathogenesis. Cell Host & Microbe 10, 118-135.
Chen, H., Crabb, J.W., and Kinsey, J.A. (1998). The Neurospora aab-1 gene encodes a CCAAT binding protein homologous to yeast HAP5. Genetics 148, 123-130.
Chen, H., and Kinsey, J.A. (1995). Purification of a heteromeric CCAAT binding protein from Neurospora crassa. Mol Gen Genet 249, 301-308.
Conde-Rosa, A., Amador, R., Perez-Torres, D., Colon, E., Sanchez-Rivera, C., Nieves-Plaza, M., Gonzalez-Ramos, M., and Bertran-Pasarell, J. (2010). Candidemia distribution, associated risk factors, and attributed mortality at a university-based medical center. P R Health Sci J 29, 26-29.
Copenhaver, G.P., Homann, O.R., Dea, J., Noble, S.M., and Johnson, A.D. (2009). A Phenotypic Profile of the Candida albicans Regulatory Network. PLoS Genetics 5, e1000783.
Coustry, F., Maity, S.N., Sinha, S., and de Crombrugghe, B. (1996). The transcriptional activity of the CCAAT-binding factor CBF is mediated by two distinct activation domains, one in the CBF-B subunit and the other in the CBF-C subunit. J Biol Chem 271, 14485-14491.
Dang, V.D., Bohn, C., Bolotin-Fukuhara, M., and Daignan-Fornier, B. (1996). The CCAAT box-binding factor stimulates ammonium assimilation in Saccharomyces cerevisiae, defining a new cross-pathway regulation between nitrogen and carbon metabolisms. J Bacteriol 178, 1842-1849.
Drakesmith, H., and Prentice, A. (2008). Viral infection and iron metabolism. Nature Reviews Microbiology 6, 541-552.
Eck, R., Hundt, S., Hartl, A., Roemer, E., and Kunkel, W. (1999). A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiology 145 ( Pt 9), 2415-2422.
Edmond, M.B., Wallace, S.E., McClish, D.K., Pfaller, M.A., Jones, R.N., and Wenzel, R.P. (1999). Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis 29, 239-244.
Edwards, D., Murray, J.A., and Smith, A.G. (1998). Multiple genes encoding the conserved CCAAT-box transcription factor complex are expressed in Arabidopsis. Plant Physiol 117, 1015-1022.
Eisendle, M., Oberegger, H., Zadra, I., and Haas, H. (2003). The siderophore system is essential for viability of Aspergillus nidulans: functional analysis of two genes encoding l-ornithine N 5-monooxygenase (sidA) and a non-ribosomal peptide synthetase (sidC). Molecular Microbiology 49, 359-375.
Fedorovich, D., Protchenko, O., and Lesuisse, E. (1999). Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are co-regulated processes. BioMetals 12, 295-300.
Fingar, D.C., and Blenis, J. (2004). Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23, 3151-3171.
Forsburg, S.L., and Guarente, L. (1989). Identification and characterization of HAP4: a third component of the CCAAT-bound HAP2/HAP3 heteromer. Genes Dev 3, 1166-1178.
Furuyama, K., Kaneko, K., and Vargas, P.D. (2007). Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. Tohoku J Exp Med 213, 1-16.
Gale, C.A., Bendel, C.M., McClellan, M., Hauser, M., Becker, J.M., Berman, J., and Hostetter, M.K. (1998). Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279, 1355-1358.
Ghannoum, M.A. (2000). Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13, 122-143, table of contents.
Gillum, A.M., Tsay, E.Y., and Kirsch, D.R. (1984). Isolation of the Candida albicans gene for orotidine-5'-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 198, 179-182.
Halliwell, B., and Gutteridge, J.M. (1992). Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett 307, 108-112.
Hammacott, J.E., Williams, P.H., and Cashmore, A.M. (2000). Candida albicans CFL1 encodes a functional ferric reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant. Microbiology 146 ( Pt 4), 869-876.
Heymann, P., Gerads, M., Schaller, M., Dromer, F., Winkelmann, G., and Ernst, J.F. (2002). The Siderophore Iron Transporter of Candida albicans (Sit1p/Arn1p) Mediates Uptake of Ferrichrome-Type Siderophores and Is Required for Epithelial Invasion. Infection and Immunity 70, 5246-5255.
Higa, A., Miyamoto, E., Rahman, L., and Kitamura, Y. (2008). Root tip-dependent, active riboflavin secretion by Hyoscyamus albus hairy roots under iron deficiency. Plant Physiology and Biochemistry 46, 452-460.
Hortschansky, P., Eisendle, M., Al-Abdallah, Q., Schmidt, A.D., Bergmann, S., Thon, M., Kniemeyer, O., Abt, B., Seeber, B., Werner, E.R., et al. (2007). Interaction of HapX with the CCAAT-binding complex--a novel mechanism of gene regulation by iron. EMBO J 26, 3157-3168.
Hsu, P.C., Yang, C.Y., and Lan, C.Y. (2011). Candida albicans Hap43 Is a Low Iron-Induced Repressor Essential for Iron-Responsive Transcriptional Regulation and Virulence. Eukaryot Cell.
Hu, C.J. (2002). Characterization and Functional Analysis of the Siderophore-Iron Transporter CaArn1p in Candida albicans. Journal of Biological Chemistry 277, 30598-30605.
Johnson, D.C., Cano, K.E., Kroger, E.C., and McNabb, D.S. (2005). Novel Regulatory Function for the CCAAT-Binding Factor in Candida albicans. Eukaryotic Cell 4, 1662-1676.
Jung, W.H., and Kronstad, J.W. (2007). Iron and fungal pathogenesis: a case study with Cryptococcus neoformans. Cellular Microbiology 10, 277-284.
Kang, D.K. (2003). Iron Regulatory Protein 2 as Iron Sensor. IRON-DEPENDENT OXIDATIVE MODIFICATION OF CYSTEINE. Journal of Biological Chemistry 278, 14857-14864.
Kato, M., Aoyama, A., Naruse, F., Kobayashi, T., and Tsukagoshi, N. (1997). An Aspergillus nidulans nuclear protein, AnCP, involved in enhancement of Taka-amylase A gene expression, binds to the CCAAT-containing taaG2, amdS, and gatA promoters. Mol Gen Genet 254, 119-126.
Knight, S.A., Lesuisse, E., Stearman, R., Klausner, R.D., and Dancis, A. (2002). Reductive iron uptake by Candida albicans: role of copper, iron and the TUP1 regulator. Microbiology 148, 29-40.
Kosman, D.J. (2003). Molecular mechanisms of iron uptake in fungi. Mol Microbiol 47, 1185-1197.
Labbé, S., Pelletier, B., and Mercier, A. (2007). Iron homeostasis in the fission yeast Schizosaccharomyces pombe. BioMetals 20, 523-537.
Lan, C.-Y., Rodarte, G., Murillo, L.A., Jones, T., Davis, R.W., Dungan, J., Newport, G., and Agabian, N. (2004). Regulatory networks affected by iron availability in Candida albicans. Molecular Microbiology 53, 1451-1469.
Lesuisse, E., Blaiseau, P.L., Dancis, A., and Camadro, J.M. (2001). Siderophore uptake and use by the yeast Saccharomyces cerevisiae. Microbiology 147, 289-298.
Li, Q., Herrler, M., Landsberger, N., Kaludov, N., Ogryzko, V.V., Nakatani, Y., and Wolffe, A.P. (1998). Xenopus NF-Y pre-sets chromatin to potentiate p300 and acetylation-responsive transcription from the Xenopus hsp70 promoter in vivo. EMBO J 17, 6300-6315.
Lo, H.J., Kohler, J.R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A., and Fink, G.R. (1997). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939-949.
Lodi, T., Goffrini, P., Bolondi, I., and Ferrero, I. (1998). Transcriptional regulation of the KlDLD gene, encoding the mitochondrial enzyme D-lactate ferricytochrome c oxidoreductase in Kluyveromyces lactis: effect of Klhap2 and fog mutations. Curr Genet 34, 12-20.
Maity, S.N., and de Crombrugghe, B. (1998). Role of the CCAAT-binding protein CBF/NF-Y in transcription. Trends Biochem Sci 23, 174-178.
Mantovani, R. (1999). The molecular biology of the CCAAT-binding factor NF-Y. Gene 239, 15-27.
Martins, L.J., Jensen, L.T., Simon, J.R., Keller, G.L., and Winge, D.R. (1998). Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273, 23716-23721.
McNabb, D.S., and Pinto, I. (2005). Assembly of the Hap2p/Hap3p/Hap4p/Hap5p-DNA Complex in Saccharomyces cerevisiae. Eukaryotic Cell 4, 1829-1839.
McNabb, D.S., Tseng, K.A., and Guarente, L. (1997). The Saccharomyces cerevisiae Hap5p homolog from fission yeast reveals two conserved domains that are essential for assembly of heterotetrameric CCAAT-binding factor. Mol Cell Biol 17, 7008-7018.
McNabb, D.S., Xing, Y., and Guarente, L. (1995). Cloning of yeast HAP5: a novel subunit of a heterotrimeric complex required for CCAAT binding. Genes Dev 9, 47-58.
Mercier, A., Watt, S., Bahler, J., and Labbe, S. (2008). Key Function for the CCAAT-Binding Factor Php4 To Regulate Gene Expression in Response to Iron Deficiency in Fission Yeast. Eukaryotic Cell 7, 493-508.
Moors, M.A., Stull, T.L., Blank, K.J., Buckley, H.R., and Mosser, D.M. (1992). A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med 175, 1643-1651.
Neilands, J.B. (1995). Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270, 26723-26726.
Nordlund, P., and Reichard, P. (2006). Ribonucleotide reductases. Annu Rev Biochem 75, 681-706.
Olesen, J.T., Fikes, J.D., and Guarente, L. (1991). The Schizosaccharomyces pombe homolog of Saccharomyces cerevisiae HAP2 reveals selective and stringent conservation of the small essential core protein domain. Mol Cell Biol 11, 611-619.
Ong, S., Shanho, J., Ho, B., and Ding, J. (2006). Iron-withholding strategy in innate immunity. Immunobiology 211, 295-314.
Papadopoulos, J.S., and Agarwala, R. (2007). COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics 23, 1073-1079.
Pendrak, M.L. (2003). Heme Oxygenase in Candida albicans Is Regulated by Hemoglobin and Is Necessary for Metabolism of Exogenous Heme and Hemoglobin to alpha-Biliverdin. Journal of Biological Chemistry 279, 3426-3433.
Philpott, C.C., and Protchenko, O. (2007). Response to Iron Deprivation in Saccharomyces cerevisiae. Eukaryotic Cell 7, 20-27.
Puig, S., Askeland, E., and Thiele, D.J. (2005). Coordinated Remodeling of Cellular Metabolism during Iron Deficiency through Targeted mRNA Degradation. Cell 120, 99-110.
Puig, S., Vergara, S.V., and Thiele, D.J. (2008). Cooperation of Two mRNA-Binding Proteins Drives Metabolic Adaptation to Iron Deficiency. Cell Metabolism 7, 555-564.
Ramanan, N. (2000). A High-Affinity Iron Permease Essential for Candida albicans Virulence. Science 288, 1062-1064.
Ratledge, C., and Dover, L.G. (2000). Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54, 881-941.
Reinke, A., Chen, J.C.Y., Aronova, S., and Powers, T. (2006). Caffeine Targets TOR Complex I and Provides Evidence for a Regulatory Link between the FRB and Kinase Domains of Tor1p. Journal of Biological Chemistry 281, 31616-31626.
Reuss, O., Vik, A., Kolter, R., and Morschhauser, J. (2004). The SAT1 flipper, an optimized tool for gene disruption in Candida albicans. Gene 341, 119-127.
Riego, L., Avendano, A., DeLuna, A., Rodriguez, E., and Gonzalez, A. (2002). GDH1 expression is regulated by GLN3, GCN4, and HAP4 under respiratory growth. Biochem Biophys Res Commun 293, 79-85.
Ruan, S.Y., and Hsueh, P.R. (2009). Invasive candidiasis: an overview from Taiwan. J Formos Med Assoc 108, 443-451.
Rupp, S. (2002). LacZ assays in yeast. Methods Enzymol 350, 112-131.
Russell, C.L., and Brown, A.J. (2005). Expression of one-hybrid fusions with Staphylococcus aureus lexA in Candida albicans confirms that Nrg1 is a transcriptional repressor and that Gcn4 is a transcriptional activator. Fungal Genet Biol 42, 676-683.
Rutherford, J.C. (2001). A second iron-regulatory system in yeast independent of Aft1p. Proceedings of the National Academy of Sciences 98, 14322-14327.
Rutherford, J.C. (2003). Aft1p and Aft2p Mediate Iron-responsive Gene Expression in Yeast through Related Promoter Elements. Journal of Biological Chemistry 278, 27636-27643.
Sanglard, D., Hube, B., Monod, M., Odds, F.C., and Gow, N.A. (1997). A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun 65, 3539-3546.
Santos, R. (2003). Haemin uptake and use as an iron source by Candida albicans: role of CaHMX1-encoded haem oxygenase. Microbiology 149, 579-588.
Schaible, U.E., and Kaufmann, S.H.E. (2004). Iron and microbial infection. Nature Reviews Microbiology 2, 946-953.
Schaller, M., Borelli, C., Korting, H.C., and Hube, B. (2005). Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48, 365-377.
Schrettl, M. (2004). Siderophore Biosynthesis But Not Reductive Iron Assimilation Is Essential for Aspergillus fumigatus Virulence. Journal of Experimental Medicine 200, 1213-1219.
Schrettl, M., Beckmann, N., Varga, J., Heinekamp, T., Jacobsen, I.D., Jöchl, C., Moussa, T.A., Wang, S., Gsaller, F., Blatzer, M., et al. (2010). HapX-Mediated Adaption to Iron Starvation Is Crucial for Virulence of Aspergillus fumigatus. PLoS Pathogens 6, e1001124.
Schrettl, M., Winkelmann, G., and Haas, H. (2004). Ferrichrome in Schizosaccharomyces pombe--an iron transport and iron storage compound. BioMetals 17, 647-654.
Schuller, H.J. (2003). Transcriptional control of nonfermentative metabolism in the yeast Saccharomyces cerevisiae. Curr Genet 43, 139-160.
Shakoury-Elizeh, M., Protchenko, O., Berger, A., Cox, J., Gable, K., Dunn, T.M., Prinz, W.A., Bard, M., and Philpott, C.C. (2010). Metabolic Response to Iron Deficiency in Saccharomyces cerevisiae. Journal of Biological Chemistry 285, 14823-14833.
Sheftel, A., Stehling, O., and Lill, R. (2010). Iron–sulfur proteins in health and disease. Trends in Endocrinology & Metabolism 21, 302-314.
Singh, A., Kaur, N., and Kosman, D.J. (2007). The Metalloreductase Fre6p in Fe-Efflux from the Yeast Vacuole. Journal of Biological Chemistry 282, 28619-28626.
Singh, R.P., Prasad, H.K., Sinha, I., Agarwal, N., and Natarajan, K. (2011). Cap2/HAP complex is a critical transcriptional regulator that has dual but contrasting roles in regulation of iron homeostasis in Candida albicans. J Biol Chem.
Stearman, R., Yuan, D.S., Yamaguchi-Iwai, Y., Klausner, R.D., and Dancis, A. (1996). A permease-oxidase complex involved in high-affinity iron uptake in yeast. Science 271, 1552-1557.
Stynen, B., Van Dijck, P., and Tournu, H. (2010). A CUG codon adapted two-hybrid system for the pathogenic fungus Candida albicans. Nucleic Acids Research 38, e184-e184.
Sudbery, P., Gow, N., and Berman, J. (2004). The distinct morphogenic states of Candida albicans. Trends in Microbiology 12, 317-324.
Tanaka, A., Kato, M., Hashimoto, H., Kamei, K., Naruse, F., Papagiannopoulos, P., Davis, M.A., Hynes, M.J., Kobayashi, T., and Tsukagoshi, N. (2000). An Aspergillus oryzae CCAAT-binding protein, AoCP, is involved in the high-level expression of the Taka-amylase A gene. Curr Genet 37, 380-387.
Urbanowski, J.L., and Piper, R.C. (1999). The iron transporter Fth1p forms a complex with the Fet5 iron oxidase and resides on the vacuolar membrane. J Biol Chem 274, 38061-38070.
Vartivarian, S.E., Anaissie, E.J., Cowart, R.E., Sprigg, H.A., Tingler, M.J., and Jacobson, E.S. (1993). Regulation of cryptococcal capsular polysaccharide by iron. J Infect Dis 167, 186-190.
Vinson, C., Acharya, A., and Taparowsky, E.J. (2006). Deciphering B-ZIP transcription factor interactions in vitro and in vivo. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression 1759, 4-12.
Weissman, Z., and Kornitzer, D. (2004). A family of Candida cell surface haem-binding proteins involved in haemin and haemoglobin-iron utilization. Molecular Microbiology 53, 1209-1220.
Weissman, Z., Shemer, R., Conibear, E., and Kornitzer, D. (2008). An endocytic mechanism for haemoglobin-iron acquisition in Candida albicans. Molecular Microbiology 69, 201-217.
Weissman, Z., Shemer, R., and Kornitzer, D. (2002). Deletion of the copper transporter CaCCC2 reveals two distinct pathways for iron acquisition in Candida albicans. Mol Microbiol 44, 1551-1560.
Whiteway, M., and Oberholzer, U. (2004). Candida morphogenesis and host-pathogen interactions. Current Opinion in Microbiology 7, 350-357.
Yamaguchi-Iwai, Y. (2002). Subcellular Localization of Aft1 Transcription Factor Responds to Iron Status in Saccharomyces cerevisiae. Journal of Biological Chemistry 277, 18914-18918.
Yamaguchi-Iwai, Y., Dancis, A., and Klausner, R.D. (1995). AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14, 1231-1239.
Yuan, D.S., Dancis, A., and Klausner, R.D. (1997). Restriction of copper export in Saccharomyces cerevisiae to a late Golgi or post-Golgi compartment in the secretory pathway. J Biol Chem 272, 25787-25793.
Yun, C.W. (2000). Siderophore-Iron Uptake in Saccharomyces cerevisiae. IDENTIFICATION OF FERRICHROME AND FUSARININE TRANSPORTERS. Journal of Biological Chemistry 275, 16354-16359.
Yun, C.W., Ferea, T., Rashford, J., Ardon, O., Brown, P.O., Botstein, D., Kaplan, J., and Philpott, C.C. (2000). Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae. Evidence for two pathways of iron uptake. J Biol Chem 275, 10709-10715.
Zaas, A.K., Aziz, H., Lucas, J., Perfect, J.R., and Ginsburg, G.S. (2010). Blood Gene Expression Signatures Predict Invasive Candidiasis. Science Translational Medicine 2, 21ra17-21ra17.
Zeilinger, S., Ebner, A., Marosits, T., Mach, R., and Kubicek, C.P. (2001). The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol Genet Genomics 266, 56-63.
Zitomer, R.S., and Lowry, C.V. (1992). Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev 56, 1-11.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *