帳號:guest(18.119.131.178)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林俞村
作者(外文):Lin, Yu-Cun
論文名稱(中文):以干擾性核糖核酸剔除人類肺癌細胞CL1-0之穀胱甘肽還原酶基因所得選殖細胞株之cathepsin S蛋白酶表現以及其生物效應之研究
論文名稱(外文):Cathepsin S expression and its effects in human lung adenocarcinoma CL1 cells after glutathione reductase (GR) siRNA transfection
指導教授(中文):黃海美
口試委員(中文):張大慈
李孟娟
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:9880565
出版年(民國):100
畢業學年度:100
語文別:英文
論文頁數:80
中文關鍵詞:穀胱甘肽還原酶半胱胺酸組織蛋白酶人類肺癌細胞CL1干擾性核糖核酸
外文關鍵詞:glutathione reductasecysteine cathepsin Shuman lung adenocarcinoma CL1 cellssiRNA
相關次數:
  • 推薦推薦:0
  • 點閱點閱:79
  • 評分評分:*****
  • 下載下載:5
  • 收藏收藏:0
肺腺癌原始細胞株CL1-0 (台大醫院楊泮池的病患樣品),培養在24-孔盤,每孔含一塗佈Matrige/基底膜基質的小內插杯中,72小時後,穿透過膜的細胞繼續培養為CL1-1子細胞,再連續4次重複相似操作,取”穿透過的細胞” 繼續培養,一共獲得5種肺腺癌子細胞株CL1-X(1~5)。前人的實驗結果獲知:5種子細胞株之侵入能力是CL1-0原始細胞株的四至六倍,然而許多年來,它們的遺傳不穩定性而造成入侵能力不同的特性,並不十分了解。
最近,我們實驗室的數據顯示CL1-3細胞株之內源性與外源性半胱胺酸組織蛋白酶S (CTSS)的活性分別各為CL1-0的5~7倍與2~3倍;此外,與CL1-0原始細胞株之抗氧化相關分子相較,本研究顯示較高侵入能力且高CTSS的CL1-3細胞株只有原始細胞株的榖光甘肽還原酶(GR)含量的52.4%、榖光甘肽(GSH)含量的82.5%、榖光甘肽轉移酶(GST)含量的122.7%、榖光甘肽過氧化酶(Gpx)含量的113.6%。為了解CL1-3細胞是否因為由原始細胞株CL1-0經過 “穿越基底膜”之選殖”增加侵入能力”方式,而導致GR活性降低以及CTSS活性增高,本研究應用干擾性核醣核酸技術降低CL1-0細胞內的GR活性到近似CL1-3細胞中GR的含量(程度),並觀察所得選殖細胞株之CTSS活性及其後續影響。
病毒載體含有GR之干擾性核醣核酸基因序列(編號二、三、五,購自中央央研究院國家型干擾性和醣核酸設施)以及抵抗嘌呤黴素基因序列,將之轉染至CL1-0細胞株內;病毒載體僅含有抵抗嘌呤黴素基因序列,轉染至CL1-0細胞株內則作為控制組實驗。前者所得抗嘌呤黴素細胞株,分別以酵素活性分析,並挑選出低活性之GR和高活性之CTSS的穩定性單一細胞株。在轉殖基因實驗1中,從含有嘌呤黴素之培養液挑選出來68株細胞,其中48株細胞(>70%)之GR活性低於33.1 ± 4.5 U/mg protein (接近於CL1-3細胞之背景值)。48株細胞中的19株細胞(28%)之GR活性約為原始細胞CL1-0中GR含量(33.1 ± 4.5 U/mg protein)的0.53倍 (接近於CL1-3細胞中GR含量)。將GR活性較低的10株 (<原始細胞CL1-0中GR含量之0.4倍)繼續測試其CTSS活性,與對照組比較後,發現只有一株細胞#3-16具有1.64倍的CTSS活性。在轉殖基因實驗2中,含有GR干擾性核醣核酸基因序列(編號五) ,以及抵抗嘌呤黴素基因序列之載體轉殖至CL1-0原始細胞株後,共挑選出抗嘌呤黴素之77株細胞,其中38株細胞(49.4%)之CTSS超過原始細胞CL1-0之活性(10.7 ± 0.4 RFU),約為後者之1.1至2.0倍。38株細胞內有6細胞株 所含之CTSS活性超過原始細胞~1.5倍,各細胞株之GR活性,也比較接近於低GR活性的CL1-3細胞株。
從實驗1中選出細胞株3-13、3-16、5-04,實驗2中選出細胞株5-29來進行傷口癒合實驗(wound healing assay)及細胞穿透實驗(Boyden chamber assay),分析各選出的細胞株的移動能力,與對照原始CL1-0細胞株相較之下,細胞株3-13(1.64倍之CTSS和0.22倍之GR活性)具有1.5倍的移動能力;細胞株5-29 (2倍之CTSS和0.38倍之GR活性)具有16倍的轉移能力,結果顯示: 低GR活性及高CTSS活性的細胞株具有較好的移動能力。因此,本研究證實: 經由干擾性核醣核酸技術降低原始CL1-0細胞株之GR活性,獲得一些比原始細胞低GR活性的細胞株,且可獲得具有高CTSS活性(1.5~2.0倍),及高移動能力之細胞株。
在本研究的第二部分,選定NEM、PMSF及E-64這三種半胱胺酸蛋白酶抑制劑來抑制CL1-3細胞內CTSS的活性,經in vitro實驗發現: E-64之IC50 為5 nM, NEM之IC50 為800 μM。 至於PMSF抑制劑,對於CTSS的抑制程度與不加藥的控制組相比,並沒有統計上的差異;此外,in vivo處理細胞實驗結果則顯示: E-64之IC50 為10 μM,因此推論E-64具有良好的抑制CL1-3細胞內CTSS活性效果。
雖然前述選殖的細胞株3-13之GR活性是CL1-0細胞的0.22倍,但暴露於25~50 μM過氧化氫H2O2四小時後,相較於CL1-0細胞其存活率僅有些許不同, 對H2O2敏感程度大一些;然而,CL1-3細胞之GR活性為CL1-0之0.5倍,暴露於25~50 μM過氧化氫四小時或40 μM過氧化氫1~4小時之後,相較於相同處理之CL1-0細胞,兩者之存活率有顯著性的差異(p<<0.05)。CL1-3細胞的CTSS是CL1-0的6~7倍,除了其GR是CL1-0的0.5倍, 較高的6~7倍的CTSS活性是否增加了CL1-3細胞對於過氧化氫的敏感性,則有待進一步來研究。
CL1-X (1~5) cells as a lung-cancer metastasis cell model were established through Matrigel-coated Transwell-membrane in cell culture insert (in each well of 24-well micro-titer dish) after 72-h selection and 5 consecutive procedures from CL1-0 human lung adenocarcinoma in the laboratory of Dr. P. C. Yang from National Taiwan University Hospital. Their invasive abilities through basement membrane matrix showed a 4- to 6- fold increase over that of the parental cells. Nevertheless, not all characters for their genetic instabilities were known for many years.
Recently, data from our laboratory indicated that endogenous and exogenous cathepsin S (CTSS) protease activity in CL1-3 increased 5~7-fold and 2~3-fold, respectively, in comparison with those in CL1-0 parental cells. Measurement on several anti-oxidative molecules resulted in about one-half glutathione reductase (GR) activity (P<<0.01), less glutathione (GSH) (P<0.01), more GSH transferase (GST) (P<0.03), slightly more Glutathione peroxidase (GpX) activity (P=0.06-0.09) in CL1-3 cells having relatively more invasive (higher CTSS) abilities. To understand the causes of decreased GR and increased CTSS activity in CL1-3 cells after invasive ability selection from parental CL1-0 cells, gene manipulation and GR-siRNA transfection in CL1-0 cells to produce similar phenomenon as CL1-3 cells was conducted in this study.
GR-siRNA (#2, #3 and #5 different sequence, from Academia Sinica) and puromycin gene containing lentivirus vectors were transfected into CL1-0 cells. Clones containing low GR activity and high CTSS activity were selected. In Exp. I, among 68 clones picked from puromycin containing medium, 48 clones (>70%) had GR activity lower than 18.1 U/mg protein (close to background of CL1-3 cells). Among them, 19 clones (28%) showed lower than 0.53-fold of parental GR activity. Ten (relative lower GR, < 0.4-fold) of these 19 clones were chosen to further examine their CTSS activities. Only one clone, #3-16 (GR-siRNA #3 transfected) from all selected clones showed one-fifth GR activity (very low) and 1.64-fold endogenous CTSS activity in comparison with that in CL1-0-mock cells. In Exp. II, vectors containing GR-siRNA#5 and puromycin gene were transfected into CL1-0 cells. Among 77 clones picked from puromycin containing medium, 38 clones (49.4%) had 1.1~2.0-fold of parental CTSS activity. Six clones among these high CTSS clones contained more than 1.5-fold of parental CTSS activity and less than one-half (0.16~0.38-fold) of parental GR activity (close to background of CL1-3 cells).
Cell migration ability examination by means of wound healing assays and Boyden chamber assays was determined in clones 3-13, 3-16, 5-04 from Exp. I, clone 5-29 from Exp. II and parental CL1-0 cells, respectively. The results indicated that those clones from GR-knock down manipulation and high-CTSS selection have better cell migration abilities. Clone 3-13 [1.64-fold CTSS, 0.22-fold GR] and clone 5-29 [2.0-fold CTSS, 0.38-fold GR] showed 1.5-fold and 16-fold of parental cell migration ability. Therefore, clones containing higher CTSS activity (1.5~2.0-fold) and cell migration abilities than parental cells had been obtained from genetic manipulation to lower down GR activity in parental CL1-0 cells.
In the second part of this study, CTSS inhibitors, L-trans-epoxysuccinyl- L-leucylamido (4-guanidino) butane (E-64), N-Ethylmaleimide (NEM) and phenylmethanesulfonyl fluoride (PMSF) were applied in CL1-3 cells. E-64 reduced 50% CTSS activity at 5 nM in vitro and 10 μM in vivo. In addition, NEM reduced 50% CTSS activity at 800 μM in vitro. However, there was no significant inhibition on CTSS activity after PMSF treatment. Therefore, E-64 was a considerable potent inhibitor.
Although clone 3-13 had 0.22-fold of parental GR activity, clone 3-13 showed slightly SRB viability difference from parental CL1-0 cells after H2O2 exposure for 4 h. In contrast, CL1-3 cells, containing 0.5-fold GR activity of parental CL1-0 cells, showed significant different sensitivity to H2O2 (4 h at 25~50 μM dose or 1~4 h at 40 μM), from CL1-0 cells. CL1-3 cells have 6~7-fold of parental CTSS activity. Whether higher CTSS activity in CL1-3 cells further increased H2O2 sensitivity (in comparison with clone 3-13 cells) remained to be further investigated.
中文摘要 I
Abstract III
誌謝 V
Table of Contents VI
List of Figures VIII
List of Tables IX
Abbreviations X
Introduction 1
1.Lung cancer 1
2.Human lung adenocarcinoma cell lines 1
3.Cysteine cathepsin proteases 2
4.Lysosomal cysteine cathepsin S (CTSS) 4
5.CTSS and cancer 5
Part I : exogenous inhibitors of CTSS 6
6.Cathepsin S (CTSS) inhibitors 6
7.L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) 7
Part II: the relationship between CTSS and glutathione reductase (GR) 8
8.Glutathione reductase (GR) reduces GSSG to GSH 8
9.Glutathione and cancer 9
Motivation 11
Materials and Methods 13
Materials 13
1.Cell lines 13
2.Chemicals 13
3.Plasmids 13
4.Selection marker-puromycin 14
Methods 15
1.Cell culture conditions 15
2.Sulforhodamine B (SRB) cell viability assay for cytotoxicity 15
3.Wound healing assay 16
4.Boyden chamber assays 16
5.Transfection 17
6.Preparation of media and for the measurement of CTSS activity 18
7.Cathepsin S (CTSS) activity assay 18
Measurement of anti-oxidative enzymes or molecules 19
8.Glutathione reductase (GR) activity assay 19
9.Glutathione peroxidase (Gpx) activity assay 20
10.Catalase activity assay 21
11.Determination of GSH 21
Results 23
Part I: exogenous inhibitors of CTSS. 23
1.Effect of NEM, PMSF orE-64 on the inhibition of CTSS activity in CL1-3 cell extracts 23
2.Effect of E-64 exposure on the activity of CTSS in CL1-3 cells in vivo 24
3.Analysis of E-64 toxicities in CL1-3 cells by SRB assay as well as migration ability by wound healing and Boyden chamber assay 24
Part II: the relationship between CTSS and glutathione reductase (GR) 25
1.Cysteine cathepsin S (CTSS) and anti-oxidative enzymes or molecules in parental CL1-0 and CL1-3 cells. 25
2.GR siRNA targeting sequences 26
3.Puromycin killing curve 26
4.Selection of the siGR-transfected cells in Exp. I through a decrease on GR activity 27
5.The CTSS activity and GSH level in CL1-0 siGR-transfected cells 28
7.Selection of the siGR-transfected cells in Exp. II through an increase on CTSS activity 29
8.The CTSS effects on cell migration in GR siRNA transfected CL1-0 cells in Exp. II 30
9.Effects of hydrogen peroxide on GR siRNA transfected cells 31
Discussion 32
Part I: Exogenous inhibitors of CTSS 32
1.Effects of inhibitors to reduce CTSS activity in vitro and in vivo 32
2.Effects of E-64 on CTSS activity and cell migration in CL1-3 cells at my current study 32
Part II: The relationship between CTSS and glutathione reductase (GR) 33
1.The reverse relationship presented between GR and CTSS 34
2.Why chose clone 3-13, 3-16 and 5-04 from Exp. I and parental CL1-0 cells to conduct further cell migration assays? 34
3.Why chose clone 5--29 from Exp. II and parental CL1-0 cells to conduct cell migration assays? 35
4.Whether GR K.D. experiments in CL1-0 cells will lead me to obtain clones having higher CTSS activity and cell migration ability than parental cells? 36
References 38
Figures 47
Tables 63
Appendix 74
Achkar, C., Q. M. Gong, et al. (1990). "Differences in targeting and secretion of cathepsins B and L by BALB/3T3 fibroblasts and Moloney murine sarcoma virus-transformed BALB/3T3 fibroblasts." The Journal of biological chemistry 265(23): 13650-13654.
Adachi, W., S. Kawamoto, et al. (1998). "Isolation and characterization of human cathepsin V: a major proteinase in corneal epithelium." Investigative ophthalmology & visual science 39(10): 1789-1796.
Aebi, H. (1984). "Catalase in vitro." Methods in enzymology 105: 121-126.
Allerstorfer, S., G. Sonvilla, et al. (2008). "FGF5 as an oncogenic factor in human glioblastoma multiforme: autocrine and paracrine activities." Oncogene 27(30): 4180-4190.
Almeida, P. C., I. L. Nantes, et al. (2001). "Cathepsin B activity regulation. Heparin-like glycosaminogylcans protect human cathepsin B from alkaline pH-induced inactivation." J Biol Chem 276(2): 944-951.
Arning, J., R. Dringen, et al. (2008). "Structure-activity relationships for the impact of selected isothiazol-3-one biocides on glutathione metabolism and glutathione reductase of the human liver cell line Hep G2." Toxicology 246(2-3): 203-212.
Baker, S. M., L. Karlsson, et al. (2003). "Cloning, expression, purification, and activity of dog (Canis familiaris) and monkey (Saimiri boliviensis) cathepsin S." Protein expression and purification 28(1): 93-101.
Bania, J., E. Gatti, et al. (2003). "Human cathepsin S, but not cathepsin L, degrades efficiently MHC class II-associated invariant chain in nonprofessional APCs." Proc Natl Acad Sci U S A 100(11): 6664-6669.
Barrett, A. J., A. A. Kembhavi, et al. (1982). "L-trans-Epoxysuccinyl-leucylamido(4-guanidino)butane (E-64) and its analogues as inhibitors of cysteine proteinases including cathepsins B, H and L." The Biochemical journal 201(1): 189-198.
Barrett, A. J., A. A. Kembhavi, et al. (1981). "E-64 [L-trans-epoxysuccinyl-leucyl-amido(4-guanidino)butane] and related epoxides as inhibitors of cysteine proteinases." Acta biologica et medica Germanica 40(10-11): 1513-1517.
Berdowska, I. (2004). "Cysteine proteases as disease markers." Clin Chim Acta 342(1-2): 41-69.
Bjornland, K., L. Buo, et al. (1996). "Cysteine proteinase inhibitors reduce malignant melanoma cell invasion in vitro." Anticancer research 16(4A): 1627-1631.
Boike, G., T. Lah, et al. (1992). "A possible role for cysteine proteinase and its inhibitors in motility of malignant melanoma and other tumour cells." Melanoma research 1(5-6): 333-340.
Bromme, D., P. R. Bonneau, et al. (1993). "Functional expression of human cathepsin S in Saccharomyces cerevisiae. Purification and characterization of the recombinant enzyme." The Journal of biological chemistry 268(7): 4832-4838.
Bromme, D., J. L. Klaus, et al. (1996). "Peptidyl vinyl sulphones: a new class of potent and selective cysteine protease inhibitors: S2P2 specificity of human cathepsin O2 in comparison with cathepsins S and L." Biochem J 315 ( Pt 1): 85-89.
Buck, M. R., D. G. Karustis, et al. (1992). "Degradation of extracellular-matrix proteins by human cathepsin B from normal and tumour tissues." Biochem J 282 ( Pt 1): 273-278.
Buhling, F., U. Peitz, et al. (2004). "Cathepsins K, L, B, X and W are differentially expressed in normal and chronically inflamed gastric mucosa." Biological chemistry 385(5): 439-445.
Burden, R. E., J. A. Gormley, et al. (2009). "Antibody-mediated inhibition of cathepsin S blocks colorectal tumor invasion and angiogenesis." Clinical cancer research : an official journal of the American Association for Cancer Research 15(19): 6042-6051.
Caglic, D., J. R. Pungercar, et al. (2007). "Glycosaminoglycans facilitate procathepsin B activation through disruption of propeptide-mature enzyme interactions." J Biol Chem 282(45): 33076-33085.
Cardone, R. A., V. Casavola, et al. (2005). "The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis." Nat Rev Cancer 5(10): 786-795.
Carretero, J., E. Obrador, et al. (1999). "Growth-associated changes in glutathione content correlate with liver metastatic activity of B16 melanoma cells." Clinical & experimental metastasis 17(7): 567-574.
Chan, S. J., B. San Segundo, et al. (1986). "Nucleotide and predicted amino acid sequences of cloned human and mouse preprocathepsin B cDNAs." Proceedings of the National Academy of Sciences of the United States of America 83(20): 7721-7725.
Chang, W. S. W., H. R. Wu, et al. (2007). "Lysosomal cysteine proteinase cathepsin S as a potential target for anti-cancer therapy." J Cancer Mol 3(1): 5-14.
Chen, H. C. (2005). "Boyden chamber assay." Methods in molecular biology 294: 15-22.
Chen, J. C., B. J. Uang, et al. (2010). "Design and synthesis of alpha-ketoamides as cathepsin S inhibitors with potential applications against tumor invasion and angiogenesis." Journal of medicinal chemistry 53(11): 4545-4549.
Chen JC, U. B., Lyu PC, Chang JY, Liu KJ, Kuo CC, Hsieh HP, Wang HC, Cheng CS, Chang YH, Chang MD, Chang WS, Lin CC. (2010). "Design and Synthesis of α-Ketoamides as Cathepsin S Inhibitors with Potential Applications against Tumor Invasion and Angiogenesis." J Med Chem. 53(11): 4545-4549.
Chiu, K. H., Y. H. Chang, et al. (2011). "Quantitative secretome analysis reveals that COL6A1 is a metastasis-associated protein using stacking gel-aided purification combined with iTRAQ labeling." Journal of proteome research 10(3): 1110-1125.
Chu, Y. W., P. C. Yang, et al. (1997). "Selection of invasive and metastatic subpopulations from a human lung adenocarcinoma cell line." Am J Respir Cell Mol Biol 17(3): 353-360.
Cohn, V. H. and J. Lyle (1966). "A fluorometric assay for glutathione." Anal Biochem 14(3): 434-440.
Duffy, M. J. (1996). "Proteases as prognostic markers in cancer." Clinical cancer research : an official journal of the American Association for Cancer Research 2(4): 613-618.
Estrela, J. M., A. Ortega, et al. (2006). "Glutathione in cancer biology and therapy." Critical reviews in clinical laboratory sciences 43(2): 143-181.
Fairhead, M., S. M. Kelly, et al. (2008). "A heparin binding motif on the pro-domain of human procathepsin L mediates zymogen destabilization and activation." Biochem Biophys Res Commun 366(3): 862-867.
Fernandez, P. L., X. Farre, et al. (2001). "Expression of cathepsins B and S in the progression of prostate carcinoma." International journal of cancer. Journal international du cancer 95(1): 51-55.
Flannery, T., D. Gibson, et al. (2003). "The clinical significance of cathepsin S expression in human astrocytomas." Am J Pathol 163(1): 175-182.
Flannery, T., R. S. McConnell, et al. (2007). "Detection of cathepsin S cysteine protease in human brain tumour microdialysates in vivo." Br J Neurosurg 21(2): 204-209.
Flannery, T., S. McQuaid, et al. (2006). "Cathepsin S expression: An independent prognostic factor in glioblastoma tumours--A pilot study." Int J Cancer 119(4): 854-860.
Flohe, L. and W. A. Gunzler (1984). "Assays of glutathione peroxidase." Methods in enzymology 105: 114-121.
Franco, R., R. Sanchez-Olea, et al. (2009). "Environmental toxicity, oxidative stress and apoptosis: menage a trois." Mutation research 674(1-2): 3-22.
Gatenby, R. A., E. T. Gawlinski, et al. (2006). "Acid-mediated tumor invasion: a multidisciplinary study." Cancer Res 66(10): 5216-5223.
Gocheva, V. and J. A. Joyce (2007). "Cysteine cathepsins and the cutting edge of cancer invasion." Cell Cycle 6(1): 60-64.
Grimm, J., D. G. Kirsch, et al. (2005). "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer." Proc Natl Acad Sci U S A 102(40): 14404-14409.
Gupta, S., R. K. Singh, et al. (2008). "Cysteine cathepsin S as an immunomodulatory target: present and future trends." Expert Opin Ther Targets 12(3): 291-299.
Hanada, K., M. Tamai, et al. (1978). "Isolation and characterization of E-64, a new thiol protease inhibitor." Agricultural and Biological Chemistry (Japan).
Hang, H. C., J. Loureiro, et al. (2006). "Mechanism-based probe for the analysis of cathepsin cysteine proteases in living cells." ACS Chem Biol 1(11): 713-723.
Harman, L. S., D. K. Carver, et al. (1986). "One- and two-electron oxidation of reduced glutathione by peroxidases." J Biol Chem 261(4): 1642-1648.
Hart, T. C., P. S. Hart, et al. (1999). "Mutations of the cathepsin C gene are responsible for Papillon-Lefevre syndrome." J Med Genet 36(12): 881-887.
Hashida, S., T. Towatari, et al. (1980). "Inhibitions by E-64 derivatives of rat liver cathepsin B and cathepsin L in vitro and in vivo." Journal of biochemistry 88(6): 1805-1811.
Hooper, N. M. (2002). "Proteases: a primer." Essays Biochem 38: 1-8.
Inaoka, T., G. Bilbe, et al. (1995). "Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone." Biochemical and biophysical research communications 206(1): 89-96.
Ishidoh, K. and E. Kominami (1995). "Procathepsin L degrades extracellular matrix proteins in the presence of glycosaminoglycans in vitro." Biochem Biophys Res Commun 217(2): 624-631.
Jarvinen, K., P. Pietarinen-Runtti, et al. (2000). "Antioxidant defense mechanisms of human mesothelioma and lung adenocarcinoma cells." Am J Physiol Lung Cell Mol Physiol 278(4): L696-702.
Jedeszko, C. and B. F. Sloane (2004). "Cysteine cathepsins in human cancer." Biol Chem 385(11): 1017-1027.
Joyce, J. A., A. Baruch, et al. (2004). "Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis." Cancer Cell 5(5): 443-453.
Kamphuis, I. G., J. Drenth, et al. (1985). "Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain." J Mol Biol 182(2): 317-329.
Kane, S. E. and M. M. Gottesman (1990). "The role of cathepsin L in malignant transformation." Seminars in cancer biology 1(2): 127-136.
Kaulmann, G., G. J. Palm, et al. (2006). "The crystal structure of a Cys25 -> Ala mutant of human procathepsin S elucidates enzyme-prosequence interactions." Protein science : a publication of the Protein Society 15(11): 2619-2629.
Kihara, M., H. Kakegawa, et al. (2002). "Chondroitin sulfate proteoglycan is a potent enhancer in the processing of procathepsin L." Biol Chem 383(12): 1925-1929.
Kopper, L. and J. Timar (2005). "Genomics of lung cancer may change diagnosis, prognosis and therapy." Pathol Oncol Res 11(1): 5-10.
Kos, J., A. Sekirnik, et al. (2001). "Cathepsin S in tumours, regional lymph nodes and sera of patients with lung cancer: relation to prognosis." Br J Cancer 85(8): 1193-1200.
Krueger, S., T. Kalinski, et al. (2005). "Up-regulation of cathepsin X in Helicobacter pylori gastritis and gastric cancer." The Journal of pathology 207(1): 32-42.
Kuester, D., M. Vieth, et al. (2005). "Upregulation of cathepsin W-expressing T cells is specific for autoimmune atrophic gastritis compared to other types of chronic gastritis." World journal of gastroenterology : WJG 11(38): 5951-5957.
Lai, S. L., R. P. Perng, et al. (2000). "p53 gene status modulates the chemosensitivity of non-small cell lung cancer cells." J Biomed Sci 7(1): 64-70.
Linnerth, N. M., K. Sirbovan, et al. (2005). "Use of a transgenic mouse model to identify markers of human lung tumors." Int J Cancer 114(6): 977-982.
Liu, J., L. Ma, et al. (2006). "Increased serum cathepsin S in patients with atherosclerosis and diabetes." Atherosclerosis 186(2): 411-419.
Lorenz, J. C., C. A. Busacca, et al. (2010). "Large-scale asymmetric synthesis of a cathepsin S inhibitor." The Journal of organic chemistry 75(4): 1155-1161.
Mason, R. W., G. D. Green, et al. (1985). "Human liver cathepsin L." Biochem J 226(1): 233-241.
Maubach, G., K. Schilling, et al. (1997). "The inhibition of cathepsin S by its propeptide--specificity and mechanism of action." Eur J Biochem 250(3): 745-750.
McGrath, M. E. (1999). "The lysosomal cysteine proteases." Annu Rev Biophys Biomol Struct 28: 181-204.
McGrath, M. E., J. T. Palmer, et al. (1998). "Crystal structure of human cathepsin S." Protein science : a publication of the Protein Society 7(6): 1294-1302.
Meister, A. and M. E. Anderson (1983). "Glutathione." Annu Rev Biochem 52: 711-760.
Mohamed, M. M. and B. F. Sloane (2006). "Cysteine cathepsins: multifunctional enzymes in cancer." Nat Rev Cancer 6(10): 764-775.
Nacht, M., T. Dracheva, et al. (2001). "Molecular characteristics of non-small cell lung cancer." Proc Natl Acad Sci U S A 98(26): 15203-15208.
Nagler, D. K., S. Kruger, et al. (2004). "Up-regulation of cathepsin X in prostate cancer and prostatic intraepithelial neoplasia." The Prostate 60(2): 109-119.
Nakagawa, T. Y., W. H. Brissette, et al. (1999). "Impaired invariant chain degradation and antigen presentation and diminished collagen-induced arthritis in cathepsin S null mice." Immunity 10(2): 207-217.
Nascimento, F. D., C. C. Rizzi, et al. (2005). "Cathepsin X binds to cell surface heparan sulfate proteoglycans." Arch Biochem Biophys 436(2): 323-332.
Nishio, K., T. Nakamura, et al. (1999). "Drug resistance in lung cancer." Curr Opin Oncol 11(2): 109-115.
Noctor, G. and C. H. Foyer (1998). "ASCORBATE AND GLUTATHIONE: Keeping Active Oxygen Under Control." Annu Rev Plant Physiol Plant Mol Biol 49: 249-279.
Oberle, C., J. Huai, et al. (2010). "Lysosomal membrane permeabilization and cathepsin release is a Bax/Bak-dependent, amplifying event of apoptosis in fibroblasts and monocytes." Cell death and differentiation 17(7): 1167-1178.
Obrador, E., J. Carretero, et al. (2002). "gamma-Glutamyl transpeptidase overexpression increases metastatic growth of B16 melanoma cells in the mouse liver." Hepatology 35(1): 74-81.
Ortega, A., J. Carretero, et al. (2008). "Tumoricidal activity of endothelium-derived NO and the survival of metastatic cells with high GSH and Bcl-2 levels." Nitric oxide : biology and chemistry / official journal of the Nitric Oxide Society 19(2): 107-114.
Ortega, A. L., S. Mena, et al. (2010). "Oxidative and Nitrosative Stress in the Metastatic Microenvironment." Cancers 2(2): 274-304.
Ortega, A. L., S. Mena, et al. (2011). "Glutathione in Cancer Cell Death." Cancers 3(1): 1285-1310.
Ostensen, M., B. Morland, et al. (1983). "Stimulation of murine macrophage cathepsin B by serum from patients with rheumatoid arthritis: an indicator of disease activity." Clinical and experimental immunology 51(1): 103-109.
Otto, H. H. and T. Schirmeister (1997). "Cysteine Proteases and Their Inhibitors." Chem Rev 97(1): 133-172.
Palermo, C. and J. A. Joyce (2008). "Cysteine cathepsin proteases as pharmacological targets in cancer." Trends Pharmacol Sci 29(1): 22-28.
Pauly, T. A., T. Sulea, et al. (2003). "Specificity determinants of human cathepsin s revealed by crystal structures of complexes." Biochemistry 42(11): 3203-3213.
Podgorski, I. and B. F. Sloane (2003). "Cathepsin B and its role(s) in cancer progression." Biochem Soc Symp(70): 263-276.
Qian, F., A. S. Bajkowski, et al. (1989). "Expression of five cathepsins in murine melanomas of varying metastatic potential and normal tissues." Cancer research 49(17): 4870-4875.
Rao, J. S. (2003). "Molecular mechanisms of glioma invasiveness: the role of proteases." Nat Rev Cancer 3(7): 489-501.
Rawlings, N. D., F. R. Morton, et al. (2006). "MEROPS: the peptidase database." Nucleic Acids Res 34(Database issue): D270-272.
Redwood, S. M., B. C. Liu, et al. (1992). "Abrogation of the invasion of human bladder tumor cells by using protease inhibitor(s)." Cancer 69(5): 1212-1219.
Rescigno, M. and R. N. Perham (1994). "Structure of the NADPH-binding motif of glutathione reductase: efficiency determined by evolution." Biochemistry 33(19): 5721-5727.
Rice-Evans, C. A., N. J. Miller, et al. (1996). "Structure-antioxidant activity relationships of flavonoids and phenolic acids." Free Radic Biol Med 20(7): 933-956.
Riese, R. J., R. N. Mitchell, et al. (1998). "Cathepsin S activity regulates antigen presentation and immunity." J Clin Invest 101(11): 2351-2363.
Riese, R. J., P. R. Wolf, et al. (1996). "Essential role for cathepsin S in MHC class II-associated invariant chain processing and peptide loading." Immunity 4(4): 357-366.
Rodriguez, L. G., X. Wu, et al. (2005). "Wound-healing assay." Methods in molecular biology 294: 23-29.
Saegusa, K., N. Ishimaru, et al. (2002). "Cathepsin S inhibitor prevents autoantigen presentation and autoimmunity." J Clin Invest 110(3): 361-369.
Saftig, P., E. Hunziker, et al. (1998). "Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice." Proceedings of the National Academy of Sciences of the United States of America 95(23): 13453-13458.
Santamaria, I., G. Velasco, et al. (1998). "Cathepsin L2, a novel human cysteine proteinase produced by breast and colorectal carcinomas." Cancer research 58(8): 1624-1630.
Satoyoshi, E. (1992). "Therapeutic trials on progressive muscular dystrophy." Internal medicine 31(7): 841-846.
Saydam, N., A. Kirb, et al. (1997). "Determination of glutathione, glutathione reductase, glutathione peroxidase and glutathione S-transferase levels in human lung cancer tissues." Cancer Lett 119(1): 13-19.
Schweiger, A., I. J. Christensen, et al. (2004). "Serum cathepsin H as a potential prognostic marker in patients with colorectal cancer." Int J Biol Markers 19(4): 289-294.
Scrutton, N. S., A. Berry, et al. (1990). "Redesign of the coenzyme specificity of a dehydrogenase by protein engineering." Nature 343(6253): 38-43.
Shaw, E. (1990). "Cysteinyl proteinases and their selective inactivation." Adv Enzymol Relat Areas Mol Biol 63: 271-347.
Shi, G. P., G. K. Sukhova, et al. (2003). "Deficiency of the cysteine protease cathepsin S impairs microvessel growth." Circ Res 92(5): 493-500.
Shi, G. P., A. C. Webb, et al. (1994). "Human cathepsin S: chromosomal localization, gene structure, and tissue distribution." J Biol Chem 269(15): 11530-11536.
Shyu, K. G., F. L. Hsu, et al. (2007). "Hypoxia-inducible factor 1alpha regulates lung adenocarcinoma cell invasion." Experimental cell research 313(6): 1181-1191.
Sukhova, G. K., G. P. Shi, et al. (1998). "Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells." J Clin Invest 102(3): 576-583.
Szpaderska, A. M. and A. Frankfater (2001). "An intracellular form of cathepsin B contributes to invasiveness in cancer." Cancer research 61(8): 3493-3500.
Taleb, S., R. Cancello, et al. (2006). "Cathepsin s promotes human preadipocyte differentiation: possible involvement of fibronectin degradation." Endocrinology 147(10): 4950-4959.
Tian, T., J. Hao, et al. (2007). "Determination of metastasis-associated proteins in non-small cell lung cancer by comparative proteomic analysis." Cancer science 98(8): 1265-1274.
Torres, V. A., A. Mielgo, et al. (2010). "Rab5 mediates caspase-8-promoted cell motility and metastasis." Mol Biol Cell 21(2): 369-376.
Turk, D. and G. Guncar (2003). "Lysosomal cysteine proteases (cathepsins): promising drug targets." Acta Crystallogr D Biol Crystallogr 59(Pt 2): 203-213.
Turk, V., B. Turk, et al. (2001). "Lysosomal cysteine proteases: facts and opportunities." EMBO J 20(17): 4629-4633.
Turkenburg, J. P., M. B. Lamers, et al. (2002). "Structure of a Cys25-->Ser mutant of human cathepsin S." Acta crystallographica. Section D, Biological crystallography 58(Pt 3): 451-455.
Vasiljeva, O., M. Dolinar, et al. (2005). "Recombinant human procathepsin S is capable of autocatalytic processing at neutral pH in the presence of glycosaminoglycans." FEBS Lett 579(5): 1285-1290.
Vazquez-Ortiz, G., P. Pina-Sanchez, et al. (2005). "Overexpression of cathepsin F, matrix metalloproteinases 11 and 12 in cervical cancer." BMC Cancer 5: 68.
Velasco, G., A. A. Ferrando, et al. (1994). "Human cathepsin O. Molecular cloning from a breast carcinoma, production of the active enzyme in Escherichia coli, and expression analysis in human tissues." The Journal of biological chemistry 269(43): 27136-27142.
Vichai, V. and K. Kirtikara (2006). "Sulforhodamine B colorimetric assay for cytotoxicity screening." Nature protocols 1(3): 1112-1116.
Vogt, U., E. Striehn, et al. (1999). "Lack of squamous cell lung carcinoma in vitro chemosensitivity to various drug regimens in the adenosine triphosphate cell viability chemosensitivity assay." Acta Biochim Pol 46(2): 299-302.
Vogt, U., A. Zaczek, et al. (2002). "p53 Gene status in relation to ex vivo chemosensitivity of non-small cell lung cancer." J Cancer Res Clin Oncol 128(3): 141-147.
Waghray, A., D. Keppler, et al. (2002). "Analysis of a truncated form of cathepsin H in human prostate tumor cells." J Biol Chem 277(13): 11533-11538.
Wang, B., J. Sun, et al. (2006). "Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors." J Biol Chem 281(9): 6020-6029.
Wiendl, H., A. Lautwein, et al. (2003). "Antigen processing and presentation in human muscle: cathepsin S is critical for MHC class II expression and upregulated in inflammatory myopathies." J Neuroimmunol 138(1-2): 132-143.
Wistuba, II, L. Mao, et al. (2002). "Smoking molecular damage in bronchial epithelium." Oncogene 21(48): 7298-7306.
Yang, P. C., K. T. Luh, et al. (1992). "Characterization of the mucin differentiation in human lung adenocarcinoma cell lines." American journal of respiratory cell and molecular biology 7(2): 161-171.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *