帳號:guest(18.117.183.150)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者(中):郭哲甫
作者(英):Kuo, Che-Fu
論文名稱(中):「電動公車至電網」營運模式成本有效性分析:以台北市公車為例
論文名稱(英):Cost Effectiveness Analysis of “Electric Bus-to-Grid(B2G)”Operation Model:Taking Taipei City Bus as an Example
指導教授(中):許志義
指導教授(英):Hsu, Chih-Yi
口試委員:張四立
陳嘉雯
口試委員(外文):Chang, Ssu-Li
Chen, Chia-Wen
學位類別:碩士
校院名稱:國立政治大學
系所名稱:經濟學系
出版年:2020
畢業學年度:108
語文別:中文
論文頁數:60
中文關鍵詞:電動公車成本有效性分析車至電網再生能源電池儲能
英文關鍵詞:electric buscost-effectiveness analysisvehicle-to-gridrenewable energybattery energy storage
Doi Url:http://doi.org/10.6814/NCCU202000856
相關次數:
  • 推薦推薦:0
  • 點閱點閱:137
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • gshot_favorites title msg收藏:0
隨著近年來越來越多再生能源加入電網,電力產業需要儲能設備平衡電網供需,以維持電力系統的穩定度。電力產業除了建置電池儲能系統,可以選擇電動公車的電池作為儲能設備之替代方案。電動公車可以藉由車輛至電網(Vehicle-to-grid, V2G)的技術,當不作為交通用途使用時,可以藉由整合大規模數量電動公車的電池,提供儲存量能,對於電力公司可以節省建置儲能設備之成本,公車業者可以在電動公車參與B2G(Bus-to-grid)之營運模式中,獲取業外收益。本研究分析台灣電動公車參與B2G之營運模式下,相對於傳統柴油公車之成本有效性分析。
本研究首先比較電動公車與柴油公車之差異,釐清電動公車所需考慮之成本項目與收益項目,及其如何估算;接著說明電動公車與B2G的營運模式,探討B2G營運模式之興起,而電動公車如何從其營運模式中獲取收益;最後說明B2G的概念,為電動公車參與B2G營運模式提供相關技術背景與架構。
本研究的研究方法是成本效益分析中的成本有效性分析法,分別計算傳統柴油公車與電動公車之使用成本,對於公車業者與整體社會之影響,並考量免除電動公車牌照稅以及電動公車參與B2G營運模式對於使用成本的改變。
本研究結果顯示,從使用者情境的角度,公車業者購置電動公車,且免除牌照稅,並同時申請政府補助的情況下,12輛電動公車之淨現值約為90百萬元。相較於電動公車,考量12輛柴油公車之固定成本、變動成本與稅額成本,其淨現值約為63百萬元。因此,在使用者情境中,電動公車係具有成本有效性。從整體社會情境的角度,12輛傳統柴油公車之總成本現值約為-88萬元。相較於柴油公車,考量公車業者購置電動公車不會以參與輔助服務為主要營業目的,在此情況下,12輛電動公車之總成本現值約為-104百萬元。因此,在整體社會情境中,柴油公車係具有成本有效性。
With renewable energies increasingly being incorporated into power grids, the power industry requires energy storage equipment to balance the supply and demand in power grids and thus maintain the stability of the power system. As an alternative to establishing battery energy storage systems, electric bus batteries can also be used as energy storage equipment by the power industry. With vehicle-to-grid technology, the batteries of the large amount of electric buses when not in use for transportation purposes can be integrated to store energy. This practice reduces power companies’ costs in constructing energy storage systems and helps bus operators, through engagement of their electric buses in the bus-to-grid (B2G) business model, to gain nonoperating income. This study conducted a cost-effectiveness analysis of electric buses under the B2G business model in comparison with conventional diesel buses in Taiwan.
The study compares electric and diesel buses, clarifies cost and revenue items concerning the operation of electric buses and their estimations, explores electric bus and B2G business models, and describes the rise of the B2G business model and how electric buses are a source of revenue in the model. The B2G concept is elaborated, and relevant technical background and framework for electric buses’ engagement in the B2G business model is provided.
The study employs the cost-effectiveness analysis, a type of cost–benefit analysis, to separately evaluate the influence of the costs of conventional diesel and electric buses on bus operators and society and investigate the changes in costs given that vehicle license tax is not levied on electric buses and that the electric buses are engaged in the B2G business model.
The results revealed that, in a user scenario, the net present value of 12 electric buses under the circumstance of the vehicle license tax exemption and receipt of government subsidies was approximately 90 million NTD when bus operators purchased electric buses. By contrast, the net present value of 12 diesel buses was approximately 63 million NTD after considering the fixed costs, variable costs, and tax costs. Hence, electric buses are cost effective in a user scenario. In a social scenario, the present value of the total cost of 12 conventional diesel buses was approximately −880 thousand NTD, whereas that of 12 electric buses was approximately −104 million NTD, given that bus operators are unlikely to purchase electric buses mainly to provide ancillary services. Therefore, diesel buses are cost effective in a social scenario.
第一章 緒論 1
第一節 研究動機與背景 1
第二節 研究目的 3
第三節 研究步驟 3
第四節 研究架構 4
第五節 章節安排 5
第二章 文獻探討 6
第一節 車輛至電網(V2G)技術與說明 6
第二節 電動車至電網(V2G)相關文獻 8
第三節 電動公車至電網(B2G)及其營運模式之文獻 9
第四節 智慧電網與V2G相關文獻 11
第三章 研究方法與資料來源說明 13
第一節 決策評估工具 13
第二節 成本有效性分析法 13
第三節 資料來源說明 15
第四章 實證結果 20
第一節 使用者情境 20
第二節 使用者情境一之成本有效性及敏感度分析 21
第三節 使用者情境二之成本有效性及敏感度分析 31
第四節 使用者情境三之成本有效性及敏感度分析 37
第五節 整體社會情境之成本有效性 41
第六節 本章小結 44
第五章 結論與建議 48
第一節 結論 48
第二節 政策推介 54
第三節 未來研究建議 55
參考文獻 57
一、中文部分
(一) 書籍
蕭代基、鄭蕙燕、吳珮瑛、錢玉蘭、溫麗琪(2002)。《環境保護之成本效益分析:理論、方法與應用》。台北:俊傑書局股份有限公司

(二) 期刊論文
吳念祺、陳彥豪(2001)。電動車成本結構分析及對傳統汽車產業之影響。台灣經濟月刊,第34卷第11期,頁75-82。

張嘉諳、藍柏荏、林彥均、羅亭竣、呂秉鴻、陳人豪、陳斌魁(2014)。智慧電網及推動再生能源面臨的挑戰。台灣能源期刊,第1卷第2期,頁259-281。

賴文泰(2017)。電動公車營運指標、財務效益分析與發展策略之研究。運輸計劃季刊,第46卷第4期,頁377~398。

(三) 政府報告
經濟部能源局(2017)。智慧電網總體規劃方案。

(四) 碩博士學位論文
張國廷(2006)。《都市旅次外部成本之研究》。國立台灣大學土木工程學研究所碩士論文。

游晨廷(2017)。《電動機車商業模式之經濟效益分析:共享經濟vs.電池租賃》。國立政治大學經濟學研究所碩士論文。

蔡志祥(2019)。《電動汽車儲能對電網售電營運模式之成本有效性分析》。國立政治大學經濟系研究所碩士論文。

劉庭瑋(2017)。《台灣社會折現率之實證研究》。國立台北大學自然資源與環境管理研究所碩士論文。

(五) 校內演講
聯齊科技。顏執行長哲淵。日本電力公司開放資料創新營運模式及其數據經濟發展。演講日期:2020年06月05日政大演講。

(六) 網路資源
台達電子。台達電推出V2G電動車雙向充電器。上網日期:2020年03月20日,檢自:https://cjay.cc/2018/06/delta-v2h-v2g/

行政院。空氣汙染防制行動方案(紅害減半大作戰)。上網日期:2020年03月20日,檢自:https://www.ey.gov.tw/Page/448DE008087A1971/5638596f-c460-4a12-9e62-d623d34f67d1

城市學。公車滿街走的台北市,電動公車比重為何不到一趴?上網日期:2020年03月20日,檢自:https://city.gvm.com.tw/article.html?id=68684

財政部。認識使用牌照稅。上網日期:2020年03月21日,檢自:https://www.etax.nat.gov.tw/etwmain/web/ETW118W/CON/407/6766142868914

聯合新聞網。氣候行動峰會/搭大眾運輸環保,知易行難。上網日期:2020年04月01日,檢自:https://udn.com/news/story/7314/4068934

BloombergNEF。全球42.5萬輛電動巴士,42.1輛在中國,美國僅300輛。上網日期:2020年06月15日,檢自:http://finance.sina.com/bg/usstock/usstock_news/sinacn/2019-05-16/doc-ifzikfzn1662674.shtml

BloombergNEF。Electric Vehicle Outlook 2020。上網日期:2020年06月20日,檢自:https://about.bnef.com/electric-vehicle-outlook/

二、英文文獻
(一)期刊
Dai, S., et al. (2020). "Robust Energy Management for a Corporate Energy System With Shift-Working V2G." IEEE Transactions on Automation Science and Engineering.

Karad, S. and R. Thakur (2019). "Recent trends of control strategies for doubly fed induction generator based wind turbine systems: A comparative review." Archives of Computational Methods in Engineering: 1-15.

Kaufman, S. R. (1994). "In-depth interviewing." SAGE FOCUS EDITIONS 168: 123-123.

Kempton, W. and S. E. Letendre (1997). "Electric vehicles as a new power source for electric utilities." Transportation Research Part D: Transport and Environment 2(3): 157-175.

Li, X., et al. (2020). "A cost-benefit analysis of V2G electric vehicles supporting peak shaving in Shanghai." Electric Power Systems Research 179: 106058.

Lund, H. and W. Kempton (2008). "Integration of renewable energy into the transport and electricity sectors through V2G." Energy policy 36(9): 3578-3587.

Noel, L. and R. McCormack (2014). "A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus." Applied Energy 126: 246-255.

Saini, S., et al. (2020). "A Review of Electric Vehicles Charging Topologies, its Impacts and Smart Grid Operation with V2G Technology." Available at SSRN 3575388.

Triviño-Cabrera, A., et al. (2019). "Joint routing and scheduling for electric vehicles in smart grids with V2G." Energy 175: 113-122.

Turton, H. and F. Moura (2008). "Vehicle-to-grid systems for sustainable development: An integrated energy analysis." Technological Forecasting and Social Change 75(8): 1091-1108.


(此全文20250714後開放瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *