帳號:guest(18.119.132.223)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士以作者查詢全國書目勘誤回報
作者(中):李宛儒
作者(英):Lee, Wan Ju
論文名稱(中):都市街區開放空間之空間設計效率-活動行為導向
論文名稱(英):The Space Efficiency of Street Open Space Design (Pedestrian Behavior Oriented)
指導教授(中):蔡育新
指導教授(英):Tsai, Yu-Hsin
口試委員:劉小蘭
張學聖
口試委員(外文):Liu, Hsiao-Lan
Chang, Hsueh-Sheng
學位類別:碩士
校院名稱:國立政治大學
系所名稱:地政學系
出版年:2022
畢業學年度:110
語文別:中文
論文頁數:84
中文關鍵詞:街區開放空間道路服務水準行人流量流率密度網格使用頻率
英文關鍵詞:Street open spaceLevel of servicePedestriansPedestrian flowPedestrian densityPedestrian flow rateFrequency of use
Doi Url:http://doi.org/10.6814/NCCU202201390
相關次數:
  • 推薦推薦:0
  • 點閱點閱:38
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • gshot_favorites title msg收藏:0
都市地區人口數多,都市居民對於活動空間的需求也比相當高,然都市建成環境中人口密度高、建物密集,若要新建公園綠地或廣場此類單元面積較較廣的開放空間,以符合居民的活動需求顯有困難。近年臺灣都市因都市更新所帶來的建物重建機會,部分新建住宅因容積獎勵,於相臨道路面留設相當之退縮空間,與人行道形成「街區開放空間」(含建物退縮、人行、與釋出路邊停車空間)。街區開放空間的形成擴大了人行空間的範圍,為都市居民提供潛在活動場域的可能。而在新型冠狀肺炎的影響之下,使居民使用步行或自行車的機會增加,是以街區開放空間也提供相應的人行使用需求空間;除此之外,街區開放空間更有機會增設相當的綠色空間,而為氣候變遷的減緩、調適效果。
街區開放空間為都市提供開放空間之重要場域,並且能帶環境、社會互動、公衛之效益。因此本研究欲藉街區活動調查,瞭解街區開放空間與行人活動之關聯,指認街區中是否有低度使用或衝突之地帶,而為街區規劃之修正建議。研究結果指出街區開放空間能提供足夠空間供人行使用,然使用者可能更偏好具有遮蔭功能的騎樓空間,是以就街區環境的規劃供給,應以提升遮蔽功能之設施為佳;而低度利用空間之形成,受兩大因素影響:街區的總流量和街區的樹穴面積占比,街區的路徑和樹穴設置需要搭配規劃,甚至必須考量到總流量來進行設計。
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究內容 4
第三節 研究方法與架構 6
第二章 文獻回顧 9
第一節 街區開放空間功能與設施構成 9
第二節 行人活動樣態及評估 11
第三節 微土地使用功能分區構成 14
第三章 研究設計 15
第一節 研究架構 15
第二節 研究變數 22
第四章 實證分析結果 29
第一節 街區實質環境與行人概況分析 29
第二節 街區開放空間使用者行為分析 45
第三節 街區開放空間活動熱區與低度使用空間 60
第四節 假說驗證 75
第五章 結論與建議 77
第一節 結論 77
第二節 政策建議與研究限制 79
參考文獻 82
中文文獻 82
英文文獻 82

內政部營建署. (2022). 《都市人本交通道路規劃設計手冊(第二版)》
蔡育新, 徐嘉信, 王絢, & 林家靖. (2021). 因應氣候變遷之都市街區規劃設計策略與永續 [共效益]-建物重建階段. 都市與計劃, 48(1), 27-48
石婉瑜, & Mabon, L. (2018). 臺北盆地的熱環境特徵與都市綠色基盤的影響. 都市與計劃, 45(4), 283–300.
Banerjee, A., Maurya, A. K., & Lämmel, G. (2018). A Review of Pedestrian Flow Characteristics and Level of Service over Different Pedestrian Facilities. Collective Dynamics, 3(0), 1–52. https://doi.org/10.17815/CD.2018.17
Barbarossa, L. (2020). The Post Pandemic City: Challenges and Opportunities for a Non-Motorized Urban Environment. An Overview of Italian Cases. Sustainability 2020, Vol. 12, Page 7172, 12(17), 7172. https://doi.org/10.3390/SU12177172
Cameron, R. W. F., Blanuša, T., Taylor, J. E., Salisbury, A., Halstead, A. J., Henricot, B., & Thompson, K. (2012). The domestic garden – Its contribution to urban green infrastructure. Urban Forestry & Urban Greening, 11(2), 129–137. https://doi.org/10.1016/J.UFUG.2012.01.002
Haq, S. Md. A., & Haq, S. Md. A. (2011). Urban Green Spaces and an Integrative Approach to Sustainable Environment. Journal of Environmental Protection, 2(5), 601–608. https://doi.org/10.4236/JEP.2011.25069
Humberto, M., Laboissière, R., Giannotti, M., Luiz, C., Daniel, M., Cruz, A., & Primon, H. (2019). Walking and walkability: do built environment measures correspond with pedestrian activity? Ambiente Construído, 19(4), 23–36. https://doi.org/10.1590/S1678-86212019000400341
Koh, P. P., & Wong, Y. D. (2013). Comparing pedestrians’ needs and behaviours in different land use environments. Journal of Transport Geography, 26, 43–50. https://doi.org/10.1016/J.JTRANGEO.2012.08.012
Koohsari, M. J., Oka, K., Owen, N., & Sugiyama, T. (2019). Natural movement: A space syntax theory linking urban form and function with walking for transport. Health & Place, 58, 102072. https://doi.org/10.1016/J.HEALTHPLACE.2019.01.002
Lan, W., Dang, J., Wang, Y., & Wang, S. (2018). Pedestrian detection based on yolo network model. Proceedings of 2018 IEEE International Conference on Mechatronics and Automation, ICMA 2018, 1547–1551. https://doi.org/10.1109/ICMA.2018.8484698
Lerman, Y., Rofè, Y., & Omer, I. (2014). Using Space Syntax to Model Pedestrian Movement in Urban Transportation Planning. Geographical Analysis, 46(4), 392–410. https://doi.org/10.1111/GEAN.12063
Lu, Y. (2019). Using Google Street View to investigate the association between street greenery and physical activity. Landscape and Urban Planning, 191, 103435. https://doi.org/10.1016/J.LANDURBPLAN.2018.08.029
Mehta, V. (2008). Walkable streets: pedestrian behavior, perceptions and attitudes. Http://Dx.Doi.Org/10.1080/17549170802529480, 1(3), 217–245. https://doi.org/10.1080/17549170802529480
PUSHKAREV, B Zupan, J M Pushkarev, Boris Zupan, & Jeffrey M. (1975). CAPACITY OF WALKWAYS. https://trid.trb.org/view/35106
Rasidi, M. H., Jamirsah, N., & Said, I. (2012). Urban Green Space Design Affects Urban Residents’ Social Interaction. Procedia - Social and Behavioral Sciences, 68, 464–480. https://doi.org/10.1016/j.sbspro.2012.12.242
Rasouli, A., & Tsotsos, J. K. (2020). Autonomous vehicles that interact with pedestrians: A survey of theory and practice. IEEE Transactions on Intelligent Transportation Systems, 21(3), 900–918. https://doi.org/10.1109/TITS.2019.2901817
Rezaei, M., Azarmi, M., Mohammad, F., & Mir, P. (2021). Traffic-Net: 3D Traffic Monitoring Using a Single Camera. https://arxiv.org/abs/2109.09165v1
World Health Organization. (2017). Urban green spaces: a brief for action.
(此全文20270822後開放瀏覽)
電子全文
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *