透過您的圖書館登入
IP:18.216.69.239
  • 期刊

利用加權總體最小二乘法提升二次曲面擬合區域性大地起伏精度之研究-以台中市為例

A Study of Improving Quadratic Curve Surface Fitting Local Geoid by Weighted Total Least Squares Method-A Case Study of Taichung City

摘要


本研究利用台灣台中市現有施測之一等水準點正高與GPS 所測得之椭球高進行大地起伏模型擬合。其擬合的方法在傳統上是利用曲面擬合法並通過最小二乘法的方式進行計算出大地起伏值。然而最小二乘法並未考慮到係數矩陣中存在偶然誤差的問題。因此本研究為改善傳統曲面擬合法精度,利用加權總體最小二乘法改進係數矩陣中之誤差,並結合二次多項式曲面擬合法計算出大地起伏值。在通過計算後相互進行比較後,得出精度較高之大地起伏值,結合傳統水準測量控制點位,並藉由改變擬合點位數量建立出較佳的區域性大地起伏模型,本研究顯示該區域模型以可達到±1.67cm 的高程精度。該區域大地起伏模型不只合乎工程測量規範的標準,也可提供欲建立區域性大地起伏模型的參考。

並列摘要


In this study, we adopt orthometric elevation of first-order leveling data and the ellipsoidal heights that are measured by GPS to fit the local geoid model. Traditionally, the fitting method adopts surface curve fitting method is calculated by least-squares to get the geoid value. Nevertheless, least-squares method can't deal with the problems which exist in random errors of data in coefficient matrix. Thus, the purpose of this study is to improve the precision of traditional surface curve fitting. We apply weighted total least-squares which also combined with quadratic polynomial surface curve fitting to improve the random errors of data in coefficient matrix and find the local geoid value with better precision. Combining traditional leveling control points with adjustment in number of fitting points, we obtain an ideal optimal local geoid model that is developed into the elevation precision of ±1.67 cm. This study provides not only a fast practical method in getting orthometric elevation but also academic references for a different method to fit the local geoid model.

參考文獻


丁海勇,孫景嶺(2013).GPS 高程轉換的總體最小二乘方法研究.大地測量與地球動力學.33(3),52-55.
林老生(2012).e-GPS 水準測量精度研究.台灣土地研究.15(2),35-58.
姚吉利,曲國慶,劉科利,高鵬(2008).合點分布與 GPS 水準面擬合精度關係研究.大地測量與地球動力學.28(5),50-54.
袁豹,岳東杰(2013).加權總體最小二乘法及其在 GPS 高程擬合中的應用.勘查科學技術.2,43-64.
張清波,潘九寶(2014).體最小二乘的加權 GPS 高程曲面擬合法.現代測繪.37(5),54-56.

延伸閱讀