透過您的圖書館登入
IP:18.188.40.207
  • 期刊

改良ADC3鋁合金之微觀組織與機械性質

Improving the Microstructure and Mechanical Properties of ADC3 Al Alloy

摘要


環保及節能是近年來工業發展的重要議題,而在耗能之運輸載具應用上,使用輕量化材料並提升其機械性質為直接有效的節能手段,本研究選用壓鑄鋁合金材料中較具韌性之ADC3鋁合金來進行改良,藉由調整合金成分來達到改善微觀組織與機械性質之目的。本研究主要於合金內添加微量Sr來改良脆性共晶矽之形貌,並降低合金之Fe與Mg含量來減少鑄件內脆相以改善ADC3鋁合金之脆性;並透過合金之顯微組織、拉伸性質以及破斷面分析來檢驗其成效。實驗結果顯示,在所探討ADC3之0.4% Fe含量系列合金中,ADC3S2鋁合金擁有較佳之機械性質,其抗拉強度為178 MPa、延伸率為5.1%及品質指數為286 MPa;而在無鐵ADC3系列合金中以ADC3S7鋁合金為最佳,其抗拉強度為180 MPa、延伸率為8.1%及品質指數為319 MPa。相比於正常Fe含量之原材料ADC3鋁合金之抗拉強度(164 MPa)及延伸率(1.7%),兩種不同低Fe含量改良型ADC3合金之抗拉強度增加約14~16 MPa及延伸率增加約3.4~6.4%。

並列摘要


Environmental protection and energy saving is an important issue in recent years, the use of lightweight materials with improved mechanical properties is a direct and effective energy-saving method in the transport industry. An ADC3 Al alloy was used in this study as base material on improving the mechanical properties by means of alloy composition adjustment. The main theme of alloy composition adjustment includes adding a small amount of Sr to modify the morphology of eutectic Si and reducing the iron and magnesium contents to decrease the amount of brittle phases produced. The results in microstructural and mechanical properties change were examined by using optical and scanning electron microscopy, tensile test, fractography, etc. The results showed that, among the modified 0.4% Fe-content ADC3 series alloys studied, the ADC3S2 alloy exhibits the best mechanical properties with tensile strength of 178 MPa, elongation of 5.1% and quality index of 286 MPa. While that in the modified Fe-free ADC3 series alloys, the ADC3S7 showed the best result with tensile strength of 180 MPa, elongation of 8.1% and quality index of 319 MPa. A comparison in the mechanical properties of a typical ADC3 alloy (with tensile stress of 164 MPa and elongation of 1.7%) to the selected modified ADC3 alloys (ADC3S2 and ADC3S7) showed that the tensile strength and elongation of two modified alloys with reduced iron contents are improved by amounts of about 14 ~ 16 MPa and 3.4% ~ 6.4 %, respectively.

被引用紀錄


Chen, J. P. (2013). 無線通訊應用之裂環共振器天線 [doctoral dissertation, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2013.10485
Lai, C. P. (2013). 共平面波導饋入槽孔天線之縮小化及阻抗匹配設計 [doctoral dissertation, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2013.00771
Chen, C. W. (2009). 探索粒子天文物理學與宇宙學中的兩個面向: 一.簇射大氣螢光的實驗室量測 二.暗能本質的現象學規範 [doctoral dissertation, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2009.02657
Shen, S. T. (2008). N型非晶矽薄膜電晶體數位電路之極低電壓與靜態電流測試 [master's thesis, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2008.00485
Tsai, M. D. (2005). 應用於微波與毫米波之矽基寬頻放大器與混波器 [doctoral dissertation, National Taiwan University]. Airiti Library. https://doi.org/10.6342/NTU.2005.01727

延伸閱讀