透過您的圖書館登入
IP:3.135.190.101
  • 期刊

以運動生物力學評斷與改善選手動作的新發展

New Developments in Assessing and Improving Athlete Movements Through Sports Biomechanics

摘要


運動生物力學的主要目標是提高運動表現並降低傷害風險(Bartlett & Bussey, 2011)。為了實現這些目標,運動生物力學學者常與教練使用定性和定量分析方法來檢查運動員的技術,試圖找出造成表現不佳的技術缺陷或高傷害風險的動作進行糾正(Lees, 2002)。而近年來,穿戴式感測器透過測量慣性、力量與肌電圖訊號等,得到運動員的運動學、動力學與肌電學的各項參數,可有效降低成本與檢測程序的複雜性來評估運動員的運動表現(Taborri et al., 2020)。然而,Glazier and Mehdizadeh (2019)研究指出由於即使極優秀運動員運動技術也有變異性,故很難直接區隔純粹是動作技術的錯誤還是某種自身的特質或功能適應的限制而產生的失敗。再者,一般的應用運動生物力學研究都是以「一組人」為研究對象,因此得到的數值只能代表「一般性」、「平均」,不能呈現最優秀、最頂尖運動員的特別之處。透過電腦模擬方式將有機會為每一位優秀運動員找到最佳化動作模式,但應用風險是否有考慮到技術改變的心理壓力與技術改變所需的訓練量等。另一方面,對於年輕的潛力選手,越來越多國家或組織利用潛能鑑定與發展系統(talent identification and development, TID)來找出具潛能的運動員並預測他們的未來表現,特別是透過運動專項技術(sport-specific technical skills)的檢測。例如Koopmann, Faber, Baker, and Schorer(2020)透過分析自從1990年以來的相關文獻,發現透過運動專項技術的檢測可以找出在不同層級運動員在技術上的差別。但多是在評估選手的成績或實驗所得到的研究結果,對於技術性相關的與在競賽中分析的相關研究仍待後續研究者投入。Waters, Phillips, Panchuk, and Dawson(2019)的訪談研究亦顯示,教練對生物力學理論的理解不一致,無法理解生物力學可以在訓練環境中提供哪些支援;故應用生物力學學者們也需要提高他們的溝通技巧。近期許多運動科學的期刊亦更重視增加生物力學學者與教練與場上人員的溝通,期能將研究成果與執行實務應用結合起來,甚至運動科學領域Q1期刊,特闢一節給教練與場上操作者參考的「實務上的應用」等作法。故建議臺灣運動生物力學研究者除從運動的角度進一步探索人體運動的生物力學原理,相互瞭解研究和實踐方面的特點,更多地參與運動技術的特質分析和改進,考量個人與群體研究的個別價值,分別並將研究結果轉譯給教練與第一線操作者理解如何具體實務應用。

關鍵字

無資料

並列摘要


The primary goals of sports biomechanics are improving sports performance and reducing injury risk (Bartlett & Bussey, 2011). Often working in cooperation with coaches, sports biomechanists use qualitative and quantitative analysis methods to detect and rectify deficiencies in athletes' technique or skill that may inhibit performance or potentially cause injury (Lees, 2002). A number of recent technological developments have advanced the spread of wearable sensors that provide detailed kinematic, kinetic, and electromyographic data. Assessment of these key performance outcomes facilitates coaching and injury prevention (Taborri et al., 2020). However, Glazier and Mehdizadeh (2019) demonstrated that variability between athletes' unique movements, even at the highest level of performance, can complicate the task of distinguishing technical deficiencies from functional adaptations or stylistic features. Furthermore, group-based analyses often conceal variability between athletes, providing only probabilistic "in general" or "on average" data that may not be valid for specific or elite athletes. Computer simulation modelling can identify specific optimum techniques to fit each athlete's unique dynamics, but application of these still risks failure due to the intense psychological pressures of competition and the volume of practice required to alter movement technique. For young potential players, more and more countries or organizations use the talent identification and development (TID) system to identify potential athletes and predict their future performance, especially through sport-specific technical skills assessment. For example, Koopmann, Faber, Baker, and Schorer (2020) demonstrated the efficacy of such tests in distinguishing between different performance levels and predicting future performance. In addition, the focus on "outcome-related" and "experimental" methods in specific populations has created opportunities for new research regarding "technique-related" and "competition" methods. Athletes, coaches and applied biomechanics scholars all benefit when the latter two interact in a daily high-performance training environment. However, as Waters, Phillips, Panchuk, and Dawson (2019) indicated, these relationships are not functioning as well as they could. Difficulties in transferring new research into coaching practice arise in part because coaches' understanding of biomechanics theory and the support that biomechanists can provide in the training environment is inconsistent. On the other hand, biomechanists could also benefit from enhancing their communication skills. Some Q1 sports science journals require a "practical application" section designed specifically to educate coaches and field practitioners regarding ways to address the gap between new research and existing practice. Therefore, sport biomechanists should not only advance relevant theory; they should also contribute to establishing optimal practice in a high-performance environment and enhancing the transfer of knowledge from scientist to coach.

並列關鍵字

無資料

參考文獻


Glazier, P. S., & Mehdizadeh, S. (2019). Challenging conventional paradigms in applied sports biomechanics research. Sports Medicine, 49(2), 171-176. doi:10.1007/s40279-018-1030-1
Koopmann, T., Faber, I., Baker, J., & Schorer, J. (2020). Assessing technical skills in talented youth athletes: A systematic review. Sports Medicine. Advance online publication. doi:10.1007/s40279-020-01299-4
Lees, A. (2002). Technique analysis in sports: A critical review. Journal of Sports Sciences, 20(10), 813-828. doi:10.1080/026404102320675657
Taborri, J., Keogh, J., Kos, A., Santuz, A., Umek, A., Urbanczyk, C., … Rossi, S. (2020). Sport biomechanics applications using inertial, force, and EMG sensors: A literature overview. Applied Bionics and Biomechanics, 2020, 2041549. doi:10.1155/2020/2041549
Waters, A., Phillips, E., Panchuk, D., & Dawson, A. (2019). The coach–scientist relationship in high-performance sport: Biomechanics and sprint coaches. International Journal of Sports Science & Coaching, 14(5), 617-628. doi:10.1177/1747954119859100

延伸閱讀