透過您的圖書館登入
IP:3.16.70.101
  • 期刊

運動誘發型支氣管收縮的理論與實務

A Review on Exercise-Induced Bronchoconstriction: Theory and Practice

摘要


運動誘發型支氣管收縮(exercise-induced bronchoconstriction, EIB)是從事運動而發生的支氣管阻塞呼吸困難的現象。高達90%的氣喘症患者會有EIB,而傑出運動員的盛行率高於一般大眾。研究結果顯示,傑出運動員,即使不是氣喘患者,也會因過多訓練於乾冷環境中或污染原暴露等而誘發。發生機制包括溫度理論與滲透壓理論。高換氣導致支氣管表面水分流失,增加滲透壓,引起支氣管平滑肌釋放介質,造成血管滲漏、浮腫與發炎。EIB的管理,分藥理管控與非藥理措施。除投藥外,教育宣導、建立行動計畫、追蹤尖峰呼氣流速、避免過敏原暴露、認識不同運動的EIB危險率、注意天候與環境以及熱身(間歇性,個人40~60%最大強度,15分鐘)與緩和運動等為非藥理措施。參加運動賽會的傑出運動員,需提出症狀的客觀證明,並取得用藥的豁免許可。

並列摘要


Exercise-induced bronchoconstriction (EIB) is a condition of breathing difficulty resulted from bronchoconstriction occurring mostly during exercise recovery. Estimation indicated that EIB occurs in up to 90% of asthmatic patients. Elite athletes even have higher incident rates than the general population. It is also confirmed that non-asthmatic patients might have EIB due to excessive training in a dry and cold environment, or constant exposure to pollutants. The underlying mechanisms of EIB include heat and hyperosmolality theory. Water loss in bronchiole surface resulted from hyperventilation could increase osmolality and following mediators released from bronchiole smooth muscle, causing blood vessel leakage, edema, as well as inflammation. The management strategies of EIB has 2 folds: pharmacological and non-pharmacological approaches, such as education, action plan, peak flow rate monitor, allergen exposure prevention, EIB risk awareness, precaution to environment and weather, prudent warming up (intermittent, 40-60% of maximal intensity, 15 min) and cooling down. To engage in sports competitions, elite athletes with EIB could apply for therapeutic use exemption by offering objective medical verification.

參考文獻


Weiler, J. M., Brannan, J. D., Randolph, C. C., Hallstrand, T. S., Parsons, J., Silver, W., et al. (2016). Exercise-induced bronchoconstriction update―2016. Journal of Allergy and Clinical Immunology, 138(5), 1292-1295. doi:10.1016/j.jaci.2016.05.029
Wells, U. M., Woods, A. J., Hanafi, Z., & Widdicombe, J. G. (1995). Tracheal epithelial damage alters tracer fluxes and effects of tracheal osmolality in sheep in vivo. Journal of Applied Physiology, 78(5), 1921-1930. doi:10.1152/jappl.1995.78.5.1921
Wilber, R. L., Rundell, K. W., Szmedra, L., Jenkinson, D. M., Im, J., & Drake, S. D. (2000). Incidence of exercise-induced bronchospasm in Olympic winter sport athletes. Medicine & Science in Sports & Exercise, 32(4), 732-737. doi:10.1097/00005768-200004000-00003
Aggarwal, B., Mulgirigama, A., & Berend, N. (2018). Exercise-induced bronchoconstriction: Prevalence, pathophysiology, patient impact, diagnosis and management. NPJ Primary Care Respiratory Medicine, 28(1), 31. doi:10.1038/s41533-018-0098-2
Anderson, S. D., Argyros, G. J., Magnussen, H., & Holzer, K. (2001). Provocation by eucapnic voluntary hyperpnoea to identify exercise induced bronchoconstriction. British Journal of Sports Medicine, 35(5), 344-347. doi:10.1136/bjsm.35.5.344

延伸閱讀