透過您的圖書館登入
IP:18.119.126.80
  • 學位論文

使用0.18-μm CMOS製程實作應用於GNSS之全積體化雙頻離散時間接收機

A 0.18-μm CMOS Fully-Integrated Discrete-Time Receiver for L1 and L5 Bands in GNSS

指導教授 : 陳怡然
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文著重在GNSS中的L1(1.57542 GHz)以及L5(1.17645 GHz)頻段的訊號,皆屬於CDMA(Code-Division Multiple Access);本接收機可以接收總共十一種訊號。由於功能的需求不同,擁有不同訊號的頻寬,分別是4.092 MHz(L1)以及10.23 MHz(L5)。考量到GNSS的訊號相較於一般通訊系統的訊號要來的微弱(-130 dBm),對於flicker noise(對於先進製程而言,其corner frequency ~ 1 MHz)的影響更加嚴重,進而造成sensitivity降低。架構上採用low-IF(Intermediate Frequency)來避開它。在射頻電路的部分,低雜訊放大器(LNA)可以控制欲接收的頻段,之後由image-rejecting mixer將RF訊號下降至所需要IF的位置;在類比頻段的部分,我們採用了離散時間濾波技術(discrete-time filtering technique),藉由數位電路控制可程式化的電容陣列,實現了可調整頻寬的濾波器。本接收機的可程式特性可以搭配DSP(Discrete-time Signal Processing)的需求做切換,即使在失去對特定系統衛星的追蹤時,可以迅速切轉並接收另一個系統的訊號。讓整體效能提升! 我們採用了0.18-μm CMOS製程設計與實現了一顆全積體化的接收機:從射頻的LNA,image-rejecting mixer,以及產生特定頻率的頻率合成器,到類比頻段可調整接收頻寬的離散時間濾波器。尤其在濾波器方面:(1)藉由數位控制,可濾出頻寬4.092 MHz以及10.23 MHz的訊號;(2)優異的抗製程變異特性,讓模擬和實作之間的差異可以減小;(3)使用較少類比元件的天性,使得我們的接收機隨著製程演進可以降低成本;(4)利用數位操作的獨特性,在靜態上不耗電!

並列摘要


The thesis focuses on the L1 (1575.42 MHz) and L5 (1176.45 MHz) bands in GNSS, which are all CDMA (Code-Division Multiple Access) systems; total 11 different signals can be captured by our receiver. Because of different applications, the signal bandwidth is different; they are 4.092 (L1) and 20.46 (L5) MHz. As the GNSS signals are relatively weak (-130 dBm) comparing to other communication systems, the flicker noise (corner frequency ~ 1 MHz in advanced process) has a big impact on the signals and then degrades the sensitivity. Our receiver is low-IF (Inter-mediate Frequency) architecture, which can avoid the low-frequency noise after down-conversion. In RF (Radio Frequency) part of the receiver, the LNA (Low-Noise Amplifier) can select wanted band and the image-reject mixer will down-converts the RF signal to required IF location. In analog part, we use the discrete-time (D.T.) filtering technique to design and implement a bandwidth-reconfigurable filter by digitally controlling a switched-capacitor array. The reconfigurability of the receiver can be controlled by the DSP (Digital-Signal Processing). When we lose the tracking to arbitrary satellites, the receiver can rapidly switch and re-track the signals which are more environmentally-resistive. Therefore, the overall performance can be enhanced! We use 0.18-μm CMOS process to design and implement a fully-integrated receiver, which includes a switchable dual-band LNA and image-reject mixer at RF, a frequency synthesizer, and bandwidth-reconfigurable D.T. filter. Especially in the D.T. filter, (1) we can filter out 4.092-MHz and 10.23-MHz signals by digital control; (2) excellent process tolerance keeps the difference between simulation and implementation small; (3) with less analog components, the cost of our design will be reduced following the process migration; (4) due to digital control, no static power consumption!

參考文獻


[3] B. C. Kuo and F. Golnaraghi, Automatic Control Systems, John Wiley & Sons, Inc., 2005.
[5] K. Muhammad, et al., “A Discrete-Time Bluetooth Receiver in a 0.13um Digital CMOS Process,” in ISSCC Dig. Tech. Papers, Feb. 2004, pp. 268-527.
[6] R. Bagheri, et al., “An 800MHz to 5GHz Software-Defined Radio Receiver in 90nm CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2006, pp. 1932-1941.
[7] A. YoshiZawa and S. Iida, “A Gain-Boosted Discrete-Time Charge-Domain FIR LPF with Double-Complementary MOS Parametric Amplifiers,” in ISSCC Dig. Tech. Papers, Feb. 2008, pp. 58-596.
[8] F. Montaudon, et al., “A Scalable 2.4-to-2.7GHz Wi-Fi & WiMAX Discrete-Time Receiver in 65nm CMOS,” in ISSCC Dig. Tech. Papers, Feb. 2008, pp. 362-619.

延伸閱讀