透過您的圖書館登入
IP:3.15.211.107
  • 學位論文

利用過渡金屬二硫屬化物之奈米材料對化學感測及催化反應進行協同作用

Nanoscale Transition Metal Dichalcogenides for Exploiting Synergies in Chemosensor and Catalysis

指導教授 : 林金全

摘要


過渡金屬二硫屬化物是一種近年來被發現的材料,它因為具有可調式的能階差以及化學上高穩定性,吸引到大家的注意。二硫化鉬與二硫化錸為過渡金屬硫化物的家族,我們將其做為二維的材料,甚至是更小尺度的量子點,進而運用到化學感測以及催化反應當中。 1.化學感測:利用二硫化鉬量子點為主體,在其表面修飾上三種不同的官能基,可獲得三種不同的化學感測受體,而這些受體可分別偵測三種不同的金屬離子。二硫化鉬量子點是在N-甲基吡咯烷酮的輔助下進行超音波震盪以及水熱法反應而成,因上述反應的關係,此量子點的邊緣會因共價鍵的斷裂而產生很多的缺陷,這些缺陷可進一步用來與含硫官能基進行表面上的修飾反應。含硫官能基分別為硫乙醇酸、半胱胺鹽酸鹽及1,3-丙二硫醇,以硫做為橋樑在二硫化鉬量子點邊緣以硫-鉬鍵形成鍵結,而官能基的另一方面以羧酸基、胺基及硫醇基用來偵測鈷、鉻及鉛等金屬離子。這三種化學感測受體對於上述的金屬離子具有高度的選擇性與靈敏度,對於鈷、鉻及鉛等金屬離子的偵測極限分別為54.5,99.6以及0.84nM。其偵測極限可到奈米等級的原因主要是量子點上修飾的官能基與特定金屬具有很強的親和力所致。此外上述提及的感測受體亦能應用在實際的水樣當中。 2.催化反應:以二硫化錸之二維材料作為載體,將貴重金屬奈米粒子嵌入其中後形成奈米複合體,此奈米複合體在含氮苯環化合物的還原反應中可作為一個出色的催化劑。催化劑的組成主要是以二硫化錸奈米層片及貴重奈米金屬,在聚乙烯吡咯烷酮的剝離作用下,將二硫化錸進行超音波震盪,便可得到二硫化錸奈米薄片,接著將貴重金屬奈米粒子(金、銀、鈀、鉑以及銣)以水熱法的方式將其成功的嵌入在奈米薄片上。接著利用場發射掃描式電子顯微鏡、X射線光電子能譜學、X光繞射分析儀以及拉曼光譜分析儀等儀器充分的證明此奈米複合體催化劑的結構與型態。二硫化錸/金、銀、鈀、鉑以及銣之奈米複合體在在含氮苯環化合物的還原反應當中扮演著催化的角色,其被還原的對象為4-硝基苯酚、2-硝基苯胺以及硝基苯,並且成功展現優異的催化能力。值得注意的是,相較於其他奈米複合體,二硫化錸/鈀、二硫化錸/銣具有更卓越催化能力。

並列摘要


Transition metal dichalcogenides (TMD) materials have attracted attention due to its tunable optical band gap and high chemical stability. Therefore, molybdenum disulfide (MoS2) and rhenium disulfide (ReS2), two members of TMD, are used in the application of chemosensor and catalysis. 1. Chemosensor: The MoS2 quantum dots (QDs) with different surface modification have multiple sensing capabilities to detecting metal ions. MoS2 QDs are synthesized through a bottom-up approach using a simple sonication and hydrothermal methods. Its surface with detective-rich edge was modified with three thiol-containing functional groups individually, which exploits a facile hydrothermal method to form carboxylic-, amine- and thiol-functionalized MoS2 QDs (MoS2/COOH, MoS2/NH2 and MoS2/SH). The design of MoS2 QDs sensors for detection of metal ions are implemented based on the fluorescence turn-on mechanism. These MoS2/COOH, MoS2/NH2 and MoS2/SH QDs show highly selective and sensitive towards Co2+, Cd2+ and Pb2+ ions with detection limit of 54.5, 99.6 and 0.84 nM, respectively. The strong affinity of each metal ions with surface functional groups brings about the detection limit as low as in the nanomolar range. What’s more, these as-prepared QDs can also offer detection capability in real water samples. 2. Catalysis: The noble metal nanoparticles decorated rhenium disulfide nanosheets (ReS2 NSs) nanohybrids are demonstrated as an excellent catalyst towards the reduction of aromatic nitro-compounds. The ReS2 NSs are prepared through sonication-assisted exfoliation in polyvinylpyrrolidone (PVP) solution and then noble metal nanoparticles (Ag, Au, Pd, Pt and Ru) are successfully deposited on the ReS2 NSs using hydrothermal method. The structure and morphology of prepared nanohybrids are well characterized by field-emission transmission electron microscopy (FETEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy measurements. These ReS2 nanohybrids exhibited superior catalytic performance towards the reduction of aromatic nitro compounds including 4-nitrophenol (4-NP), 2-nitroaniline (2-NA) and nitrobenzene (NB). Interestingly, the Pd/ReS2 and Ru/ReS2 nanohybrids showed enhanced catalytic reduction compared to the other nanohybrids used in this work.

參考文獻


1. Wilson, J. A.; Yoffe, A. D., The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Advances in Physics 1969, 18 (73), 193-335.
2. Frindt, R. F., Single Crystals of MoS2 Several Molecular Layers Thick. Journal of Applied Physics 1966, 37 (4), 1928-1929.
3. Joensen, P.; Frindt, R. F.; Morrison, S. R., Single-layer MoS2. Materials Research Bulletin 1986, 21 (4), 457-461.
4. Samadi, M.; Sarikhani, N.; Zirak, M.; Zhang, H.; Zhang, H.-L.; Moshfegh, A. Z., Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives. Nanoscale Horizons 2018, 3 (2), 90-204.
5. Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutiérrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E., Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene. ACS Nano 2013, 7 (4), 2898-2926.

延伸閱讀