透過您的圖書館登入
IP:18.222.147.4
  • 學位論文

具非平表面之複合材料膠合處剪切強度分析

Analysis of Adhesively Bonded Composite Single Lap Joints with Wrinkled Interfaces

指導教授 : 黃心豪

摘要


本研究進行一連串的實驗及有限元素模擬,針對風力發電機葉片翼型尾端結構膠黏結區域進行結構改良分析,由於製造風機葉片具耗時及高成本問題,所以為了簡化實際情況,本文利用簡易剪切試片來比擬葉片翼型尾端之黏結情形。實驗部分,首先利用Seemann複材樹脂轉注成型技術(Seemann Composite Resin Infusion Molding Process, SCRIMP)製作複合材料板,在鋪設耗材時,在纖維布頂面放置鐵絲補強材料,此方法不但能維持纖維連續性,亦能在複合材料表面建置幾何,目的是增強複合材料與結構膠間之剪切強度。本研究依循美國材料與試驗協會(American Society for Testing and Materials, ASTM)提供之ASTM D 5868-01國際規範去製作簡易剪切試片(Simple single lap specimen),再將各試片進行拉伸試驗(Single lap test)去取得載荷與位移曲線圖。由實驗結果顯示,增添補強材料之其中一組改良剪切試片,黏結區域具有較好的應變能。有限元素模擬部分是使用商用有限元素軟體Abaqus,建立二維模型來模擬剪切試片在拉伸試驗時所承受之負載條件,再分別記錄結構膠上層節點及中心線節點之標準化剝離應力(Normalized peeling stress)、標準化剪應力(Normalized shear stress),觀察結構膠之應力傳遞情形,接著使用Hashin、Cohesive破壞理論修改數值模型,對每組剪切試片進行破壞預測,觀察各組試片間之強度差異,整合實驗與模擬結果進行詳細討論,並檢討實驗因素造成之誤差,提出如何設計更優良之試片。最後根據風力發電機葉片之製程情況,討論如何將本實驗方法與風機製程結合,提供未來製造風機葉片時使用,以提高葉片翼型尾端之抗剪強度,希望能有效降低剝離應力及剪應力造成風機葉片翼型尾端破壞的情形產生,達到增加風機葉片使用年限的目的。

並列摘要


This research carried on a series of experiments and finite element simulations. Improved structural analysis of wind turbine blade airfoil trailing structural adhesive bonding area was highlighted. Due to manufacturing wind turbine blades was time consuming and costly. In order to simplify the actual situation, simple single lap specimen was used to match the blade airfoil trailing edge bonding situation. In the experiment part, Seemann Composite Resin Infusion Molding Process (SCRIMP) method was used for composite panels fabrication. In the progress of laying glass fabrics, Metallic wires serving as the reinforcement were placed on the top of the fabrics. This process not only maintains the continuity of the fibers in the composite material but also creates geometrically non-flat surface. The purpose of the process was to enhance the shear and peeling strength between the composite and the structural adhesive. Single lap specimens are made following the international standard ASTM D 5868-01 and subjected to static tensile tests. From the experimental results, one of specimens with reinforcement layer had shown better strain energy in bonded area. Finite element simulation part was using commercial finite element software Abaqus. Simplified two-dimensional finite element models were constructed and studied for understanding the stress distribution within the adhesive. Peeling stress and shear stress along the node of the top-line and centerline at structural adhesive part were recorded to observe the stress transferring situation. Then use the Hashin criteria and Cohesive criteria modify numerical model. Make damage prediction and compare the strength of each shear test specimens. The result of simulations and experiments would be compared and discussed. Review the error caused by the experimental factors and propose how to design better specimen. Finally, the study according to the manufacturing process of wind turbine blades discussed how to integrate the experimental method into the blade manufacture. The improvement of wind turbine blades manufacture would enhance the shear strength of the wind turbine blade airfoil trailing edge and reduce the blade airfoil trailing edge failure by fatal peeling stress and shear stress efficiently. Let the wind turbine blade achieve the purpose of increasing the useful life.

參考文獻


[3] 孫摩西,2012,風力發電葉片真空輔助樹脂轉注成型,碩士論文,國立成功大學航空太空工程研究所。
[4] 陳宇浩,2011,利用陶瓷壓電振動激化複合材料表面螺紋印現象,碩士論文,國立台灣大學工程科學及海洋工程研究所。
[10] 張原譯,2014,風力發電機葉片於颱風風況下之結構強度分析,碩士論文,國立台灣大學工程科學及海洋工程研究所。
[5] R. Jones, "Mechanics of composite materials", 1999.
[6] T. G. P. Gutowski, Advanced composites manufacturing: John Wiley & Sons, 1997.

延伸閱讀